[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a243203 -id:a243203
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows: terms T(n,k) of a binomial decomposition of n^n as Sum(k=0..n)T(n,k).
+0
28
1, 0, 1, 0, 2, 2, 0, 12, 6, 9, 0, 108, 48, 36, 64, 0, 1280, 540, 360, 320, 625, 0, 18750, 7680, 4860, 3840, 3750, 7776, 0, 326592, 131250, 80640, 60480, 52500, 54432, 117649, 0, 6588344, 2612736, 1575000, 1146880, 945000, 870912, 941192, 2097152
OFFSET
0,5
COMMENTS
T(n,k)=(k)^(k-1)*(n-k)^(n-k)*binomial(n,k) for k>0, while T(n,0)=0^n by convention.
There are many binomial decompositions of n^n, some with all terms positive like this one (see A243203). However, for every n, the terms corresponding to k=1..n in this one are exceptionally similar in value (at least on log scale).
LINKS
S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(13), with b=-1.
EXAMPLE
First rows of the triangle, all summing up to n^n:
1,
0, 1,
0, 2, 2,
0, 12, 6, 9,
0, 108, 48, 36, 64,
0, 1280, 540, 360, 320, 625,
PROG
(PARI) seq(nmax, b)={my(v, n, k, irow);
v = vector((nmax+1)*(nmax+2)/2); v[1]=1;
for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;
for(k=1, n, v[irow+k]=(-k*b)^(k-1)*(n+k*b)^(n-k)*binomial(n, k); ); );
return(v); }
a=seq(100, -1);
KEYWORD
nonn,tabl
AUTHOR
Stanislav Sykora, Jun 22 2014
STATUS
approved
Number of endofunctions on n labeled points constructed from k rooted trees.
+0
7
1, 2, 2, 9, 12, 6, 64, 96, 72, 24, 625, 1000, 900, 480, 120, 7776, 12960, 12960, 8640, 3600, 720, 117649, 201684, 216090, 164640, 88200, 30240, 5040, 2097152, 3670016, 4128768, 3440640, 2150400, 967680, 282240, 40320, 43046721
OFFSET
1,2
COMMENTS
T(n,k) = number of endofunctions with k recurrent elements. - Mitch Harris, Jul 06 2006
The sum of row n is n^n, for any n. Basically the same sequence arises when studying random mappings (see A243203, A243202). - Stanislav Sykora, Jun 01 2014
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 87, see (2.3.28).
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, ex. 3.3.32.
LINKS
FORMULA
T(n,k) = k*n^(n-k)*(n-1)!/(n-k)!.
E.g.f. (relative to x): A(x, y)=1/(1-y*B(x)) - 1 = y*x +(2*y+2*y^2)*x^2/2! + (9*y+12*y^2+6*y^3)*x^3/3! + ..., where B(x) is e.g.f. A000169.
From Peter Bala, Sep 30 2011: (Start)
Let F(x,t) = x/(1+t*x)*exp(-x/(1+t*x)) = x*(1 - (1+t)*x + (1+4*t+2*t^2)*x^2/2! - ...). F is essentially the e.g.f. for A144084 (see also A021010). Then the e.g.f. for the present table is t*F(x,t)^(-1), where the compositional inverse is taken with respect to x.
Removing a factor of n from the n-th row entries results in A122525 in row reversed form.
(End)
Sum_{k=2..n} (k-1) * T(n,k) = A001864(n). - Geoffrey Critzer, Aug 19 2013
Sum_{k=1..n} k * T(n,k) = A063169(n). - Alois P. Heinz, Dec 15 2021
EXAMPLE
Triangle T(n,k) begins:
1;
2, 2;
9, 12, 6;
64, 96, 72, 24;
625, 1000, 900, 480, 120;
7776, 12960, 12960, 8640, 3600, 720;
117649, 201684, 216090, 164640, 88200, 30240, 5040;
...
MAPLE
T:= (n, k)-> k*n^(n-k)*(n-1)!/(n-k)!:
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Aug 22 2012
MATHEMATICA
f[list_] := Select[list, # > 0 &]; t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Flatten[Map[f, Drop[Range[0, 10]! CoefficientList[Series[1/(1 - y*t), {x, 0, 10}], {x, y}], 1]]] (* Geoffrey Critzer, Dec 05 2011 *)
PROG
(PARI) T(n, k)=k*n^(n-k)*(n-1)!/(n-k)! \\ Charles R Greathouse IV, Dec 05 2011
CROSSREFS
Column 1: A000169.
Main diagonal: A000142.
T(n, n-1): A062119.
Row sums give A000312.
KEYWORD
nonn,tabl,changed
AUTHOR
Christian G. Bower, Dec 14 2001
STATUS
approved
Coefficients of a particular decomposition of N^N in terms of binomial coefficients.
+0
2
0, 0, 1, 0, 1, 2, 0, 3, 4, 6, 0, 16, 16, 18, 24, 0, 125, 100, 90, 96, 120, 0, 1296, 864, 648, 576, 600, 720, 0, 16807, 9604, 6174, 4704, 4200, 4320, 5040, 0, 262144, 131072, 73728, 49152, 38400, 34560, 35280, 40320, 0
OFFSET
0,6
COMMENTS
a(n) is an element in the triangle of coefficients c(N,j), N = 0,1,2,3,... denoting a row, and j = 0,1,2,...r, specified numerically by the formula below. For any row N, Sum(j=0..N)(c(N,j)*binomial(N,j)) = N^N. Note that all rows start with 0, which makes them easily recognizable. It is believed that keeping the zero terms is preferable because it makes the summation run over all admissible j's in the binomial.
FORMULA
c(N,j)=N^(N-j)*(j/N)*j! for N>0 and 0<=j<=N, and c(N,j)=0 otherwise.
EXAMPLE
The first rows of the triangle are (first item is the row number N):
0 0
1 0, 1
2 0, 1, 2
3 0, 3, 4, 6
4 0, 16, 16, 18, 24
5 0, 125, 100, 90, 96, 120
6 0, 1296, 864, 648, 576, 600, 720
7 0, 16807, 9604, 6174, 4704, 4200, 4320, 5040
8 0, 262144, 131072, 73728, 49152, 38400, 34560, 35280, 40320
PROG
(PARI) A243202(maxrow) = {
my(v, n, j, irow, f); v = vector((maxrow+1)*(maxrow+2)/2);
for(n=1, maxrow, irow=1+n*(n+1)/2; v[irow]=0; f=1;
for(j=1, n, f *= j; v[irow+j] = j*f*n^(n-j-1); ); );
return(v); }
CROSSREFS
Cf. A243203.
KEYWORD
nonn,easy,tabl
AUTHOR
Stanislav Sykora, Jun 01 2014
STATUS
approved

Search completed in 0.004 seconds