OFFSET
1,2
COMMENTS
T(n,k) = number of endofunctions with k recurrent elements. - Mitch Harris, Jul 06 2006
The sum of row n is n^n, for any n. Basically the same sequence arises when studying random mappings (see A243203, A243202). - Stanislav Sykora, Jun 01 2014
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 87, see (2.3.28).
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, ex. 3.3.32.
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
FORMULA
T(n,k) = k*n^(n-k)*(n-1)!/(n-k)!.
E.g.f. (relative to x): A(x, y)=1/(1-y*B(x)) - 1 = y*x +(2*y+2*y^2)*x^2/2! + (9*y+12*y^2+6*y^3)*x^3/3! + ..., where B(x) is e.g.f. A000169.
From Peter Bala, Sep 30 2011: (Start)
Let F(x,t) = x/(1+t*x)*exp(-x/(1+t*x)) = x*(1 - (1+t)*x + (1+4*t+2*t^2)*x^2/2! - ...). F is essentially the e.g.f. for A144084 (see also A021010). Then the e.g.f. for the present table is t*F(x,t)^(-1), where the compositional inverse is taken with respect to x.
Removing a factor of n from the n-th row entries results in A122525 in row reversed form.
(End)
Sum_{k=2..n} (k-1) * T(n,k) = A001864(n). - Geoffrey Critzer, Aug 19 2013
Sum_{k=1..n} k * T(n,k) = A063169(n). - Alois P. Heinz, Dec 15 2021
EXAMPLE
Triangle T(n,k) begins:
1;
2, 2;
9, 12, 6;
64, 96, 72, 24;
625, 1000, 900, 480, 120;
7776, 12960, 12960, 8640, 3600, 720;
117649, 201684, 216090, 164640, 88200, 30240, 5040;
...
MAPLE
T:= (n, k)-> k*n^(n-k)*(n-1)!/(n-k)!:
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Aug 22 2012
MATHEMATICA
f[list_] := Select[list, # > 0 &]; t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Flatten[Map[f, Drop[Range[0, 10]! CoefficientList[Series[1/(1 - y*t), {x, 0, 10}], {x, y}], 1]]] (* Geoffrey Critzer, Dec 05 2011 *)
PROG
(PARI) T(n, k)=k*n^(n-k)*(n-1)!/(n-k)! \\ Charles R Greathouse IV, Dec 05 2011
CROSSREFS
KEYWORD
AUTHOR
Christian G. Bower, Dec 14 2001
STATUS
approved