[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of endofunctions on n labeled points constructed from k rooted trees.
7

%I #53 Dec 06 2024 08:45:41

%S 1,2,2,9,12,6,64,96,72,24,625,1000,900,480,120,7776,12960,12960,8640,

%T 3600,720,117649,201684,216090,164640,88200,30240,5040,2097152,

%U 3670016,4128768,3440640,2150400,967680,282240,40320,43046721

%N Number of endofunctions on n labeled points constructed from k rooted trees.

%C T(n,k) = number of endofunctions with k recurrent elements. - _Mitch Harris_, Jul 06 2006

%C The sum of row n is n^n, for any n. Basically the same sequence arises when studying random mappings (see A243203, A243202). - _Stanislav Sykora_, Jun 01 2014

%D F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 87, see (2.3.28).

%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, ex. 3.3.32.

%H Alois P. Heinz, <a href="/A066324/b066324.txt">Rows n = 1..141, flattened</a>

%F T(n,k) = k*n^(n-k)*(n-1)!/(n-k)!.

%F E.g.f. (relative to x): A(x, y)=1/(1-y*B(x)) - 1 = y*x +(2*y+2*y^2)*x^2/2! + (9*y+12*y^2+6*y^3)*x^3/3! + ..., where B(x) is e.g.f. A000169.

%F From _Peter Bala_, Sep 30 2011: (Start)

%F Let F(x,t) = x/(1+t*x)*exp(-x/(1+t*x)) = x*(1 - (1+t)*x + (1+4*t+2*t^2)*x^2/2! - ...). F is essentially the e.g.f. for A144084 (see also A021010). Then the e.g.f. for the present table is t*F(x,t)^(-1), where the compositional inverse is taken with respect to x.

%F Removing a factor of n from the n-th row entries results in A122525 in row reversed form.

%F (End)

%F Sum_{k=2..n} (k-1) * T(n,k) = A001864(n). - _Geoffrey Critzer_, Aug 19 2013

%F Sum_{k=1..n} k * T(n,k) = A063169(n). - _Alois P. Heinz_, Dec 15 2021

%e Triangle T(n,k) begins:

%e 1;

%e 2, 2;

%e 9, 12, 6;

%e 64, 96, 72, 24;

%e 625, 1000, 900, 480, 120;

%e 7776, 12960, 12960, 8640, 3600, 720;

%e 117649, 201684, 216090, 164640, 88200, 30240, 5040;

%e ...

%p T:= (n, k)-> k*n^(n-k)*(n-1)!/(n-k)!:

%p seq(seq(T(n, k), k=1..n), n=1..10); # _Alois P. Heinz_, Aug 22 2012

%t f[list_] := Select[list, # > 0 &]; t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Flatten[Map[f, Drop[Range[0, 10]! CoefficientList[Series[1/(1 - y*t), {x, 0, 10}], {x, y}], 1]]] (* _Geoffrey Critzer_, Dec 05 2011 *)

%o (PARI) T(n, k)=k*n^(n-k)*(n-1)!/(n-k)! \\ _Charles R Greathouse IV_, Dec 05 2011

%Y Column 1: A000169.

%Y Main diagonal: A000142.

%Y T(n, n-1): A062119.

%Y Row sums give A000312.

%Y Cf. A001864, A021010, A063169, A122525, A144084, A243203.

%K nonn,tabl,changed

%O 1,2

%A _Christian G. Bower_, Dec 14 2001