[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A021010
Triangle of coefficients of Laguerre polynomials L_n(x) (powers of x in decreasing order).
8
1, -1, 1, 1, -4, 2, -1, 9, -18, 6, 1, -16, 72, -96, 24, -1, 25, -200, 600, -600, 120, 1, -36, 450, -2400, 5400, -4320, 720, -1, 49, -882, 7350, -29400, 52920, -35280, 5040, 1, -64, 1568, -18816, 117600, -376320, 564480, -322560, 40320, -1, 81, -2592, 42336, -381024, 1905120, -5080320, 6531840, -3265920, 362880
OFFSET
0,5
COMMENTS
abs(T(n,k)) = k!*binomial(n,k)^2 = number of k-matchings of the complete bipartite graph K_{n,n}. Example: abs(T(2,2))=2 because in the bipartite graph K_{2,2} with vertex sets {A,B},{A',B'} we have the 2-matchings {AA',BB'} and {AB',BA'}. Row sums of the absolute values yield A002720. - Emeric Deutsch, Dec 25 2004
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
J. Fernando Barbero G., Jesús Salas, Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
C. Lanczos, Applied Analysis (Annotated scans of selected pages) See page 519.
Eric Weisstein's World of Mathematics, Rook Polynomial
Kin Yip Wong, A Dynamic Coupling Model of Optical Conductivity in Mixed-Valence Systems, arXiv:2410.13144 [cond-mat.mtrl-sci], 2024. See p. 12.
FORMULA
T(n, k) = (-1)^(n-k)*k!*binomial(n, k)^2. - Emeric Deutsch, Dec 25 2004
EXAMPLE
1;
-1, 1;
1, -4, 2;
-1, 9, -18, 6;
1, -16, 72, -96, 24;
...
MAPLE
T:=(n, k)->(-1)^(n-k)*k!*binomial(n, k)^2: for n from 0 to 9 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form # Emeric Deutsch, Dec 25 2004
MATHEMATICA
Flatten[ Table[ Reverse[ CoefficientList[n!*LaguerreL[n, x], x]], {n, 0, 9}]] (* Jean-François Alcover, Nov 24 2011 *)
PROG
(PARI)
LaguerreL(n, v='x) = {
my(x='x+O('x^(n+1)), t='t);
subst(polcoeff(exp(-x*t/(1-x))/(1-x), n), 't, v);
};
concat(apply(n->Vec(n!*LaguerreL(n)), [0..9])) \\ Gheorghe Coserea, Oct 26 2017
(PARI) row(n) = Vec(n!*pollaguerre(n)); \\ Michel Marcus, Feb 06 2021
(Magma) [[(-1)^(n-k)*Factorial(k)*Binomial(n, k)^2: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 06 2018
CROSSREFS
Central terms: A295383.
Sequence in context: A367178 A259985 A144084 * A342088 A193607 A358735
KEYWORD
sign,tabl,easy,nice
STATUS
approved