[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001864
Total height of rooted trees with n labeled nodes.
(Formerly M2138 N0850)
12
0, 2, 24, 312, 4720, 82800, 1662024, 37665152, 952401888, 26602156800, 813815035000, 27069937855488, 972940216546896, 37581134047987712, 1552687346633913000, 68331503866677657600, 3191386068123595166656, 157663539876436721860608
OFFSET
1,2
COMMENTS
a(n) is the total number of nonrecurrent elements mapped into a recurrent element in all functions f:{1,2,...,n}->{1,2,...,n}. a(n) = Sum_{k=1..n-1} A216971(n,k)*k. - Geoffrey Critzer, Jan 01 2013
a(n) is the sum of the lengths of all cycles over all functions f:{1,2,...,n}->{1,2,...,n}. Fixed points are taken to have length zero. a(n) = Sum_{k=2..n} A066324(n,k)*(k-1). - Geoffrey Critzer, Aug 19 2013
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = n*A000435(n).
E.g.f: (LambertW(-x)/(1+LambertW(-x)))^2. - Vladeta Jovovic, Apr 10 2001
a(n) = Sum_{k=1..n-1} binomial(n, k)*(n-k)^(n-k)*k^k. - Benoit Cloitre, Mar 22 2003
a(n) ~ sqrt(Pi/2)*n^(n+1/2). - Vaclav Kotesovec, Aug 07 2013
a(n) = n! * Sum_{k=0..n-2} n^k/k!. - Jianing Song, Aug 08 2022
MAPLE
A001864 := proc(n) local k; add(n!*n^k/k!, k=0..n-2); end;
MATHEMATICA
Table[Sum[Binomial[n, k](n-k)^(n-k) k^k, {k, 1, n-1}], {n, 20}] (* Harvey P. Dale, Oct 10 2011 *)
a[n_] := n*(n-1)*Exp[n]*Gamma[n-1, n] // Round; Table[a[n], {n, 1, 18}] (* Jean-François Alcover, Jun 24 2013 *)
PROG
(PARI) a(n)=sum(k=1, n-1, binomial(n, k)*(n-k)^(n-k)*k^k)
(Python)
from math import comb
def A001864(n): return (sum(comb(n, k)*(n-k)**(n-k)*k**k for k in range(1, (n+1>>1)))<<1) + (0 if n&1 else comb(n, m:=n>>1)*m**n) # Chai Wah Wu, Apr 25-26 2023
CROSSREFS
Sequence in context: A246190 A246610 A119491 * A099045 A181174 A209290
KEYWORD
nonn,easy,nice
STATUS
approved