[go: up one dir, main page]

ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ

ਡਿਫ਼ਰੈਂਸ਼ੀਅਲ ਸਮੀਕਰਨ

ਵਿਕੀਪੀਡੀਆ, ਇੱਕ ਆਜ਼ਾਦ ਵਿਸ਼ਵਕੋਸ਼ ਤੋਂ

ਡਿਫ਼ਰੈਂਸ਼ੀਅਲ ਸਮੀਕਰਨ ਇੱਕ ਗਣਿਤਕ ਸਮੀਕਰਨ ਹੈ ਜਿਸ ਦਾ ਕੁਝ ਫਲਨਾਂ ਅਤੇ ਉਹਨਾਂ ਦੇ ਡੈਰੀਵੇਟਿਵ ਨਾਲ ਸਬੰਧਤ ਹੈ। ਆਮਤੌਰ ਤੇ ਫਲਨ ਨੂੰ ਭੌਤਿਕ ਮਾਤਰਾ ਅਤੇ ਡੈਰੀਵੇਟਿਵ ਨੂੰ ਬਦਲਣ ਦੀ ਦਰ ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਸਮੀਕਰਨ ਦਾ ਦੋਨਾਂ ਨਾਲ ਸਬੰਧ ਹੈ ਕਿਉਂਕੇ ਇਹ ਸਬੰਧ ਖ਼ਾਸ਼ ਕਰਕੇ ਸਧਾਰਨ ਹਨ। ਇੰਜੀਨੀਅਰਿੰਗ, ਭੌਤਿਕ ਵਿਗਿਆਨ, ਅਰਥਸ਼ਾਸਤਰ ਅਤੇ ਜੀਵ ਵਿਗਿਆਨ ਦੇ ਖੇਤਰ ਵਿੱਚ ਡਿਫਰੈਂਸ਼ੀਅਲ ਸਮੀਕਰਨ ਦਾ ਖ਼ਾਸ ਯੋਗਦਾਨ ਹੈ। ਗਣਿਤ ਵਿੱਚ ਇਸ ਦੀ ਵੱਖ ਵੱਖ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਤੋਂ ਵਿਆਖਿਆ ਕੀਤੀ ਗਈ ਹੈ ਜਿਆਦਾ ਸਬੰਧ ਇਸ ਦੇ ਹੱਲ ਜਾਂ ਹੱਲਾਂ ਦਾ ਸਮੂਹ ਤੋਂ ਹੈ ਜੋ ਇਸ ਨੂੰ ਸੰਤੁਸਤ ਕਰਦੇ ਹਨ। ਸਿਰਫ ਸਾਦੀ ਡਿਫ਼ਰੈਂਸ਼ੀਅਲ ਸਮੀਕਰਨ ਵੀ ਸੋਖੀ ਵਿਧੀ ਰਾਹੀ ਹੱਲ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ ਤਾਂ ਵੀ ਸਮੀਕਰਨ ਦੇ ਹੱਲ ਦੀ ਗਣਨਾ ਕਰਨ ਤੋਂ ਬਿਨਾਂ ਹੀ ਇਸ ਦੇ ਕੁਝ ਗੁਣਾਂ ਦਾ ਪਤਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਜੇ ਹੱਲ ਦਾ ਕੋਈ ਸੂਤਰ ਨਹੀਂ ਹੈ ਤਾਂ ਕੰਪਿਊਟਰ ਨਾਲ ਗਣਨਾ ਕਰਕੇ ਅਨੁਮਾਨਿਤ ਹੱਲ ਪਤਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਸਿਸਟਮ ਦੇ ਗੁਣਾਤਮਿਕ ਵਿਸ਼ਲੇਸ਼ਣ ਤੇ ਗਤੀਸ਼ੀਲ ਸਿਸਟਮ ਦਾ ਸਿਧਾਂਤ ਜੋਰ ਦਿੰਦਾ ਹੈ ਭਾਵੇਂ ਬਹੁਤ ਸਾਰੇ ਅੰਕੀ ਢੰਗ ਇਸ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ ਉਪਲੱਭਤ ਹਨ।

ਇਤਿਹਾਸ

[ਸੋਧੋ]

ਨਿਊਟਨ ਅਤੇ ਲਾਇਬਨਿਜ਼ ਦੇ 1671 ਵਾਲੇ Methodus fluxionum et Serierum Infinitarum ਦੇ ਚੈਪਟਰ 2 ਦੁਆਰਾ ਕੈਲਕੂਲਸ ਦੀ ਖੋਜ ਨਾਲ ਡਿਫ਼ਰੈਂਸ਼ੀਅਲ ਸਮੀਕਰਨ ਹੋਂਦ ਵਿੱਚ ਆਈ।[1] ਨਿਊਟਨ ਨੇ ਤਿੰਨ ਕਿਸਮ ਦੀਆਂ ਸਮੀਕਰਨਾਂ ਦੀ ਸੂਚੀ ਬਣਾਈ ਹੈ: ਦੋ ਡੈਰੀਵੇਟਿਵ ਸਿਰਫ ਇੱਕ ਅਣਡਿਫਰੈਂਸ਼ੀਏਟ ਮਾਤਰਾ ; ਜਿਸ ਵਿੱਚ ਅਤੇ ਹਨ; ਅਤੇ ਇੱਕ ਤੋਂ ਜ਼ਿਆਦਾ ਡੈਰੀਵੇਟਿਵ ਵਾਲੀ ਉਦਾਹਰਣ::

  • ,
    , ਅਤੇ
    , ਕਰਮਵਾਰ.

ਉਸ ਨੇ ਇਹ ਸਮੀਕਰਨਾ ਨੂੰ ਹੱਲ ਕੀਤਾ।

1695 ਵਿੱਚ ਜੈਕਬ ਬਰਨਾਉਲੀ ਨੇ ਬਰਨਾਉਲੀ ਡਿਫ਼ਰੈਂਸ਼ੀਅਲ ਸਮੀਕਰਨ ਹੱਲ ਕੀਤੀ।[2] ਇਹ ਸਮੀਕਰਨ ਆਮ ਹੈ।

ਜਿਸ ਵਿੱਚ ਉਸ ਨੇ ਵਿਸ਼ੇਸ਼ ਹੱਲ ਲੱਭਿਆ।[3]

ਸੰਗੀਤ ਵਾਲੇ ਸਾਜ਼ ਦੀ ਤਾਰ ਦਾ ਕੰਪਨ ਦੀ ਸਮੱਸਿਆ ਨੂੰ ਬਹੁਤ ਸਾਰੇ ਵਿਗਿਆਨੀ ਨੇ ਪਰਖਿਆ ਜਿਹਨਾਂ ਵਿੱਚ ਜੀਅਨ ਲੲ ਰਾਉਡ ਡੀ'ਅਲੇਮਬਰਟ, ਲਿਉਨਾਰਡ ਉਏਲਰ, ਡੇਨੀਅਲ ਬਰਨਾਉਲੀ ਅਤੇ ਜੋਸਫ਼ ਲਾਓਸ ਲੈਂਗਰੇਂਜ਼[4][5][6] 1750 ਵਿੱਚ ਉਏਲਰ-ਲੈਂਗਰੇਂਜ਼ ਸਮੀਕਰਨ ਦਾ ਵਿਕਾਸ ਹੋਇਆ। ਇੱਕ ਸਥਿਰ ਬਿੰਦੁ ਤੋਂ ਭਾਰਦਾਰ ਪਦਾਰਥ ਦਾ ਸਥਿਰ ਸਮੇਂ ਦੇ ਅੰਦਰ ਇੱਕ ਚਾਪ ਦੇ ਨਾਲ ਨਾਲ ਡਿਗਣਾ ਦੀ ਡਿਫ਼ਰੈਂਸ਼ੀਅਲ ਸਮੀਕਰਨ ਹੈ ਜੋ ਮੁਢਲੇ ਬਿੰਦੂ ਤੇ ਨਿਰਭਰ ਨਹੀਂ ਹੈ।ਇਸ ਸਮੀਕਰਨ ਨੂੰ 1755 ਵਿੱਚ ਲੈਂਗਰੇਂਜ਼ ਨੇ ਹੱਲ ਕੀਤਾ ਤੇ ਉਏਲਰ ਨੂੰ ਭੇਜ ਦਿਤਾ ਤੇ ਦੋਨਾਂ ਨੇ ਕੰਮ ਕੀਤਾ ਤੇ ਜਿਸ ਨਾਲ ਲੈਂਗਰੇਂਜ਼ ਮਕੈਨਿਕਸ ਦਾ ਆਗਾਜ ਹੋਇਆ।

ਉਦਾਹਰਣ

[ਸੋਧੋ]
ਮੰਨ ਲਉ u, x ਦਾ ਫਲਨ ਹੈ ਅਤੇ c ਅਤੇ ω ਦੋ ਸਥਿਰ ਅੰਕ ਹਨ।
  • ਪਹਿਲੇ ਦਰਜੇ ਦੀ ਸਥਿਰ ਗੁਣਾਕਾਂ ਵਾਲੇ ਸਮੀਕਰਨ ਹੈ।
  • ਇਕਸਾਰ ਦੂਜੇ ਦਰਜੇ ਦੀ ਰੇਖੀ ਸਧਾਰਨ ਸਮੀਕਰਨ:
  • ਇਕਸਾਰ ਦੂਜੇ ਦਰਜੇ ਦੀ ਰੇਖੀ ਸਥਿਰ ਗੁਣਾਕਾਂ ਵਾਲੀ ਸਧਾਰਨ ਡਿਫ਼ਰੈਂਸ਼ੀਅਲ ਸਮੀਕਨਰ:
  • ਅਣ-ਇਕਸਾਰ ਪਹਿਲੇ ਦਰਜੇ ਦੀ ਸਧਾਰਨ ਡਿਫ਼ਰੈਂਸ਼ੀਅਲ ਸਮੀਕਰਨ:
  • ਦੂਜੇ ਦਰਜੇ ਦੀ ਗੈਰ-ਲੀਨੀਅਰ ਸਧਾਰਨ ਡਿਫ਼ਰੈਂਸ਼ੀਅਲ ਸਮੀਕਰਨ ਜੋ ਪੈਂਡੂਲਮ ਦੀ ਗਤੀ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ। ਜਿਸ ਦੀ ਲੰਬਾਈ L ਹੈ।
ਮੰਨ ਲਉ u ਦੋ ਚੱਲ x ਅਤੇ t ਜਾਂ x ਅਤੇ y ਤੇ ਨਿਰਭਰ ਹੈ।
  • ਇਕਸਾਰ ਪਹਿਲੇ ਦਰਜੇ ਦੀ ਰੇਖੀ ਪਾਰਸ਼ਿਅਲ ਡਿਫ਼ਰੈਂਸ਼ੀਅਲ ਸਮੀਕਰਨ:
  • ਇਕਸਾਰ ਦੂਜੇ ਦਰਜੇ ਦੀ ਰੇਖੀ ਸਥਿਰ ਗੁਣਾਕਾਂ ਵਾਲੀ ਪਾਰਸ਼ਿਅਲ ਡਿਫ਼ਰੈਂਸ਼ੀਅਲ ਸਮੀਕਰਨ ਲੈਪਲੇਟਾ ਸਮੀਕਰਨ
  • ਤੀਜੇ ਦਰਜੇ ਨਾਨ-ਰੇਖੀ ਪਾਰਸ਼ਿਅਲ ਡਿਫ਼ਰੈਂਸ਼ੀਅਲ ਸਮੀਕਰਨ:

ਹਵਾਲੇ

[ਸੋਧੋ]
  1. Newton, Isaac. (c.1671). Methodus Fluxionum et Serierum Infinitarum (The Method of Fluxions and Infinite Series), published in 1736 [Opuscula, 1744, Vol. I. p. 66].
  2. Lua error in ਮੌਡਿਊਲ:Citation/CS1 at line 3162: attempt to call field 'year_check' (a nil value).
  3. Lua error in ਮੌਡਿਊਲ:Citation/CS1 at line 3162: attempt to call field 'year_check' (a nil value).
  4. Lua error in ਮੌਡਿਊਲ:Citation/CS1 at line 3162: attempt to call field 'year_check' (a nil value). GRAY, JW (July 1983). "BOOK REVIEWS". BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY. 9 (1). (retrieved 13 Nov 2012).
  5. Lua error in ਮੌਡਿਊਲ:Citation/CS1 at line 3162: attempt to call field 'year_check' (a nil value).
  6. For a special collection of the 9 groundbreaking papers by the three authors, see First Appearance of the wave equation: D'Alembert, Leonhard Euler, Daniel Bernoulli. - the controversy about vibrating strings Archived 2020-02-09 at the Wayback Machine. (retrieved 13 Nov 2012). Herman HJ Lynge and Son.