Displaying 1-10 of 10 results found.
page
1
1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 2, 2, 12, 13, 14, 2, 2, 13, 15, 16, 17, 2, 2, 2, 18, 19, 20, 21, 22, 2, 23, 24, 2, 2, 25, 2, 26, 2, 27, 2, 28, 19, 29, 30, 31, 2, 2, 24, 2, 32, 33, 2, 3, 2, 34, 35, 36, 37, 2, 2, 12, 38, 2, 2, 39, 2, 40, 2, 41, 37, 42, 2, 28, 43, 44, 2, 45, 32, 46, 47, 2, 2, 2, 48, 26, 49, 50, 51, 2, 2, 2, 2, 52
COMMENTS
Restricted growth sequence transform of the triple [ A373145(n), A373362(n), A373364(n)], i.e., the triple [gcd(x, y), gcd(x, z), gcd(y, z)], where x= A001414(n), y= A003415(n), z= A276085(n).
For all i, j >= 1:
PROG
(PARI)
up_to = 100000;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]);
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1, primepi(f[k, 1]-1), prime(i))); };
v373380 = rgs_transform(vector(up_to, n, Aux373380(n)));
Primorial base log-function: fully additive with a(p) = p#/p, where p# = A034386(p).
+10
168
0, 1, 2, 2, 6, 3, 30, 3, 4, 7, 210, 4, 2310, 31, 8, 4, 30030, 5, 510510, 8, 32, 211, 9699690, 5, 12, 2311, 6, 32, 223092870, 9, 6469693230, 5, 212, 30031, 36, 6, 200560490130, 510511, 2312, 9, 7420738134810, 33, 304250263527210, 212, 10, 9699691, 13082761331670030, 6, 60, 13, 30032, 2312, 614889782588491410, 7, 216, 33, 510512, 223092871, 32589158477190044730, 10
COMMENTS
This is a left inverse of A276086 ("primorial base exp-function"), hence the name "primorial base log-function". When the domain is restricted to the terms of A048103, this works also as a right inverse, as A276086(a( A048103(n))) = A048103(n) for all n >= 1. - Antti Karttunen, Apr 24 2022
FORMULA
a(1) = 0, a(n) = (e1* A002110(i1-1) + ... + ez* A002110(iz-1)) when n = prime(i1)^e1 * ... * prime(iz)^ez.
Other identities.
For all n >= 0:
a( A108951(n)) = A346105(n). [The latter has a similar additive formula as this sequence, but instead of primorials, uses their partial sums]
When applied to sequences where a certain subset of the divisors of n has been multiplicatively encoded with the help of A276086, this yields a corresponding number-theoretical sequence, i.e. completes their computation:
In the following group, the sum of the rhs-sequences is n [on each row, as say, A328841(n)+ A328842(n)=n], because the pointwise product of the corresponding lhs-sequences is A276086:
The sum or difference of the rhs-sequences is A108951:
Here the two sequences are inverse permutations of each other:
Other correspondences:
a( A276076(n)) = A351576(n). [Sequence reinterpreting factorial base representation as a primorial base representation]
(End)
MATHEMATICA
nn = 60; b = MixedRadix[Reverse@ Prime@ Range@ PrimePi[nn + 1]]; Table[FromDigits[#, b] &@ Reverse@ If[n == 1, {0}, Function[k, ReplacePart[Table[0, {PrimePi[k[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, k]]@ FactorInteger@ n], {n, nn}] (* Version 10.2, or *)
f[w_List] := Total[Times @@@ Transpose@ {Map[Times @@ # &, Prime@ Range@ Range[0, Length@ w - 1]], Reverse@ w}]; Table[f@ Reverse@ If[n == 1, {0}, Function[k, ReplacePart[Table[0, {PrimePi[k[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, k]]@ FactorInteger@ n], {n, 60}] (* Michael De Vlieger, Aug 30 2016 *)
PROG
(Scheme, with memoization-macro definec)
(PARI) A276085(n) = { my(f = factor(n), pr=1, i=1, s=0); for(k=1, #f~, while(i <= primepi(f[k, 1])-1, pr *= prime(i); i++); s += f[k, 2]*pr); (s); }; \\ Antti Karttunen, Nov 11 2024
(Python)
from sympy import primorial, primepi, factorint
def a002110(n):
return 1 if n<1 else primorial(n)
def a(n):
f=factorint(n)
return sum(f[i]*a002110(primepi(i) - 1) for i in f)
CROSSREFS
Cf. A000040, A000720, A002110, A028234, A034386, A048103, A049345, A055396, A067029, A108951, A143293, A276154, A328316, A328624, A328625, A328768, A328832, A346105, A351576, A376398 (partial sums).
Positions of multiples of k in this sequence, for k=2, 3, 4, 5, 8, 27, 3125: A003159, A339746, A369002, A373140, A373138, A377872, A377878.
Cf. A373145 [= gcd( A003415(n), a(n))], A373361 [= gcd(n, a(n))], A373362 [= gcd( A001414(n), a(n))], A373485 [= gcd( A083345(n), a(n))], A373835 [= gcd(bigomega(n), a(n))], and also A373367 and A373147 [= A003415(n) mod a(n)], A373148 [= a(n) mod A003415(n)].
Other completely additive sequences with primes p mapped to a function of p include: A001222 (with a(p)=1), A001414 (with a(p)=p), A059975 (with a(p)=p-1), A341885 (with a(p)=p*(p+1)/2), A373149 (with a(p)=prevprime(p)), A373158 (with a(p)=p#).
EXTENSIONS
Name simplified, the old name moved to the comments - Antti Karttunen, Jun 23 2024
0, 1, 1, 4, 1, 5, 1, 6, 6, 7, 1, 1, 1, 9, 8, 8, 1, 1, 1, 3, 10, 13, 1, 1, 10, 15, 9, 1, 1, 1, 1, 10, 14, 19, 12, 10, 1, 21, 16, 1, 1, 1, 1, 3, 1, 25, 1, 1, 14, 3, 20, 1, 1, 1, 16, 1, 22, 31, 1, 4, 1, 33, 1, 12, 18, 1, 1, 3, 26, 1, 1, 12, 1, 39, 1, 1, 18, 1, 1, 1, 12, 43, 1, 2, 22, 45, 32, 1, 1, 1, 20, 3, 34, 49, 24
COMMENTS
For n >= 1, a(n) is a multiple of A373363(n).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
a(n) = gcd( A001414(n), A083345(n)), where A001414 is the sum of prime factors with repetition, and A083345 is the numerator of the sum of the inverses of prime factors with repetition.
+10
11
0, 1, 1, 1, 1, 5, 1, 3, 2, 7, 1, 1, 1, 9, 8, 2, 1, 1, 1, 3, 10, 13, 1, 1, 2, 15, 1, 1, 1, 1, 1, 5, 14, 19, 12, 5, 1, 21, 16, 1, 1, 1, 1, 3, 1, 25, 1, 1, 2, 3, 20, 1, 1, 1, 16, 1, 22, 31, 1, 1, 1, 33, 1, 3, 18, 1, 1, 3, 26, 1, 1, 1, 1, 39, 1, 1, 18, 1, 1, 1, 4, 43, 1, 1, 22, 45, 32, 1, 1, 1, 20, 3, 34, 49, 24, 1, 1, 1, 1, 7
PROG
(PARI)
A083345(n) = { my(f=factor(n)); numerator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1]))); };
CROSSREFS
Cf. A345452 (positions of even terms), A353374 (their characteristic function).
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 2, 1, 2, 2, 1, 1, 2, 1, 1, 3, 1, 3, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 1, 2, 1, 1, 4, 1, 1, 1, 6, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 4, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 3, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3
PROG
(PARI)
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]);
A059975(n) = {my(f = factor(n)); sum(i = 1, #f~, f[i, 2]*(f[i, 1] - 1)); };
Numbers k for which both A001414(k) and A276085(k) are multiples of 3, where A001414 is the sum of prime factors with repetition and A276085 is the primorial base log-function.
+10
5
1, 8, 27, 35, 42, 64, 65, 77, 78, 95, 114, 119, 125, 143, 150, 155, 161, 180, 185, 186, 203, 209, 215, 216, 221, 222, 258, 275, 280, 287, 299, 305, 323, 329, 330, 335, 336, 341, 343, 365, 366, 371, 377, 395, 396, 402, 407, 413, 425, 437, 438, 473, 474, 485, 497, 510, 512, 515, 520, 527, 533, 545, 551, 575, 581, 582
COMMENTS
As A001414 and A276085 are both fully additive, this sequence forms a multiplicative semigroup: if m and n are in the sequence, then so is m*n.
CROSSREFS
Positions of multiples of 3 in A373362.
a(n) = gcd(n, A276085(n)), where A276085 is the primorial base log-function.
+10
4
1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 3, 4, 1, 3, 1, 1, 1, 1, 1, 6, 1, 19, 1, 1, 1, 3, 1, 4, 5, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 2, 1, 3, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 3, 1, 10, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 13, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1
PROG
(PARI)
A002110(n) = prod(i=1, n, prime(i));
A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]* A002110(primepi(f[k, 1])-1)); };
CROSSREFS
Cf. A108269 (positions of even terms), A328981 (their characteristic function), A359794 (positions of odd terms), A359832 (their characteristic function, parity of terms).
a(n) = gcd( A001414(n), A064097(n)), where A001414 is the sum of prime factors with repetition, and A064097 is a quasi-logarithm defined inductively by a(1) = 0 and a(p) = 1 + a(p-1) if p is prime and a(n*m) = a(n) + a(m) if m,n > 1.
+10
4
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 3, 1, 1, 2, 1, 5, 7, 1, 1, 2, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 8, 1, 2, 1, 1, 1, 1, 1, 1, 6, 2, 8, 1, 7, 1, 2, 1, 1, 1, 1, 1, 1, 9, 2, 1, 1, 4, 1, 1, 2, 2, 9, 1, 1, 1, 1, 1, 9, 1, 1, 3, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3
COMMENTS
As A001414 and A064097 are both fully additive sequences, all sequences that give the positions of multiples of some k > 1 in this sequence are closed under multiplication.
0, 1, 1, 2, 1, 1, 1, 3, 2, 7, 1, 1, 1, 1, 8, 4, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 2, 1, 12, 2, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 8, 1, 2, 1, 1, 2, 1, 1, 1, 6, 6, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 2, 2, 1, 8, 1, 1, 1, 20, 1, 2, 1, 12, 1, 1, 1, 1, 14, 1, 1, 1, 1, 1
COMMENTS
All sequences that give the positions of multiples of some natural number k in this sequence are closed under multiplication because the constituent sequences A001414, A003415, and A276085 also have the same property.
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1, primepi(f[k, 1]-1), prime(i))); };
a(n) = 1 if A001414(n) and A276085(n) are both multiples of 3, otherwise 0, where A001414 is the sum of prime factors with repetition and A276085 is the primorial base log-function.
+10
3
1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1
FORMULA
a(n) = [ A373362(n) == 0 (mod 3)], where [ ] is the Iverson bracket.
PROG
(PARI)
A002110(n) = prod(i=1, n, prime(i));
A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]* A002110(primepi(f[k, 1])-1)); };
CROSSREFS
Characteristic function of A373373.
Search completed in 0.011 seconds
|