[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a373364 -id:a373364
     Sort: relevance | references | number | modified | created      Format: long | short | data
Lexicographically earliest infinite sequence such that a(i) = a(j) => A373145(i) = A373145(j), A373362(i) = A373362(j), and A373364(i) = A373364(j), for all i, j >= 1.
+20
2
1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 2, 2, 12, 13, 14, 2, 2, 13, 15, 16, 17, 2, 2, 2, 18, 19, 20, 21, 22, 2, 23, 24, 2, 2, 25, 2, 26, 2, 27, 2, 28, 19, 29, 30, 31, 2, 2, 24, 2, 32, 33, 2, 3, 2, 34, 35, 36, 37, 2, 2, 12, 38, 2, 2, 39, 2, 40, 2, 41, 37, 42, 2, 28, 43, 44, 2, 45, 32, 46, 47, 2, 2, 2, 48, 26, 49, 50, 51, 2, 2, 2, 2, 52
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of the triple [A373145(n), A373362(n), A373364(n)], i.e., the triple [gcd(x, y), gcd(x, z), gcd(y, z)], where x=A001414(n), y=A003415(n), z=A276085(n).
For all i, j >= 1:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A373367(i) = A373367(j).
LINKS
PROG
(PARI)
up_to = 100000;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]);
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1, primepi(f[k, 1]-1), prime(i))); };
Aux373380(n) = { my(x=A001414(n), y=A003415(n), z=A276085(n)); [gcd(x, y), gcd(x, z), gcd(y, z)]; };
v373380 = rgs_transform(vector(up_to, n, Aux373380(n)));
A373380(n) = v373380[n];
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 03 2024
STATUS
approved
Numbers k such that A001414(k) and A003415(k) are both multiples of 3, where A001414 is the sum of prime factors with repetition, and A003415 is the arithmetic derivative.
+10
9
1, 8, 9, 14, 20, 26, 27, 35, 38, 44, 50, 62, 64, 65, 68, 72, 74, 77, 81, 86, 92, 95, 110, 112, 116, 119, 122, 125, 126, 134, 143, 146, 155, 158, 160, 161, 164, 170, 180, 185, 188, 194, 196, 203, 206, 208, 209, 212, 215, 216, 218, 221, 230, 234, 236, 242, 243, 254, 275, 278, 280, 284, 287, 290, 299, 302, 304, 305
OFFSET
1,2
COMMENTS
A multiplicative semigroup; if m and n are in the sequence then so is m*n.
LINKS
PROG
(PARI) isA373478 = A373477;
CROSSREFS
Cf. A001414, A003415, A373477 (characteristic function).
Positions of multiples of 3 in A373364.
Intersection of A289142 and A327863.
Disjoint union of A373475 and A373479.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 07 2024
STATUS
approved
a(n) = gcd(A001414(n), A059975(n)), where A001414 and A059975 are fully additive with a(p) = p and a(p) = p-1, respectively.
+10
7
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 2, 1, 2, 2, 1, 1, 2, 1, 1, 3, 1, 3, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 1, 2, 1, 1, 4, 1, 1, 1, 6, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 4, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 3, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3
OFFSET
1,4
LINKS
PROG
(PARI)
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]);
A059975(n) = {my(f = factor(n)); sum(i = 1, #f~, f[i, 2]*(f[i, 1] - 1)); };
A373369(n) = gcd(A001414(n), A059975(n));
CROSSREFS
Cf. A001414, A059975, A345452 (positions of even terms).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 05 2024
STATUS
approved
Numbers whose sum of prime factors (with repetition, A001414) and arithmetic derivative (A003415) are both even.
+10
5
1, 4, 8, 9, 15, 16, 21, 25, 32, 33, 35, 36, 39, 49, 51, 55, 57, 60, 64, 65, 69, 72, 77, 81, 84, 85, 87, 91, 93, 95, 100, 111, 115, 119, 120, 121, 123, 128, 129, 132, 133, 135, 140, 141, 143, 144, 145, 155, 156, 159, 161, 168, 169, 177, 183, 185, 187, 189, 196, 200, 201, 203, 204, 205, 209, 213, 215, 217, 219, 220, 221
OFFSET
1,2
COMMENTS
Numbers k such that sopfr(k) and k' are both even.
A multiplicative semigroup; if m and n are in the sequence then so is m*n.
LINKS
PROG
(PARI) isA373375 = A373374;
CROSSREFS
Intersection of A036349 and A235992.
Disjoint union of A345452 and 8*A345452.
Positions of even terms in A373364.
Cf. A001414, A003415, A373374 (characteristic function), A373376 (complement).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 03 2024
STATUS
approved
a(n) = gcd(A001414(n), A064097(n)), where A001414 is the sum of prime factors with repetition, and A064097 is a quasi-logarithm defined inductively by a(1) = 0 and a(p) = 1 + a(p-1) if p is prime and a(n*m) = a(n) + a(m) if m,n > 1.
+10
4
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 3, 1, 1, 2, 1, 5, 7, 1, 1, 2, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 8, 1, 2, 1, 1, 1, 1, 1, 1, 6, 2, 8, 1, 7, 1, 2, 1, 1, 1, 1, 1, 1, 9, 2, 1, 1, 4, 1, 1, 2, 2, 9, 1, 1, 1, 1, 1, 9, 1, 1, 3, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3
OFFSET
1,4
COMMENTS
As A001414 and A064097 are both fully additive sequences, all sequences that give the positions of multiples of some k > 1 in this sequence are closed under multiplication.
LINKS
PROG
(PARI)
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414.
A064097(n) = if(1==n, 0, 1+A064097(n-(n/vecmin(factor(n)[, 1]))));
A373365(n) = gcd(A001414(n), A064097(n));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 02 2024
STATUS
approved
a(n) is the greatest common divisor of A001414(n), A003415(n), and A276085(n).
+10
4
0, 1, 1, 2, 1, 1, 1, 3, 2, 7, 1, 1, 1, 1, 8, 4, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 2, 1, 12, 2, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 8, 1, 2, 1, 1, 2, 1, 1, 1, 6, 6, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 2, 2, 1, 8, 1, 1, 1, 20, 1, 2, 1, 12, 1, 1, 1, 1, 14, 1, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
All sequences that give the positions of multiples of some natural number k in this sequence are closed under multiplication because the constituent sequences A001414, A003415, and A276085 also have the same property.
A345452 gives the positions of even terms in this sequence, because it gives them for A373362, and because for A373145 and A373364 the positions of even terms are given by A368998 (union of A345452 and 2*A358776) and A373375 (union of A345452 and 8*A345452), thus both are supersets of A345452.
LINKS
FORMULA
a(n) = gcd(A373145(n), A373362(n)) = gcd(A373145(n), A373364(n)) = gcd(A373362(n), A373364(n)).
PROG
(PARI)
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414.
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1, primepi(f[k, 1]-1), prime(i))); };
A373367(n) = gcd([A001414(n), A003415(n), A276085(n)]);
CROSSREFS
Cf. A001414, A003415, A276085, A345452 (gives the positions of even terms).
Greatest common divisor of any two of these three: A373145, A373362, A373364.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 03 2024
STATUS
approved
Numbers k such that gcd(A001414(k), A003415(k)) is odd, where A001414 is the sum of prime factors with repetition, and A003415 is the arithmetic derivative.
+10
4
2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 20, 22, 23, 24, 26, 27, 28, 29, 30, 31, 34, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 52, 53, 54, 56, 58, 59, 61, 62, 63, 66, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 82, 83, 86, 88, 89, 90, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109
OFFSET
1,1
COMMENTS
Numbers k such that sopfr(k) and k' are not both even.
LINKS
PROG
(PARI) isA373376(n) = !A373374(n);
CROSSREFS
Positions of odd terms in A373364, positions of 0's in A373374.
Complement of A373375.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 03 2024
STATUS
approved
a(n) = gcd(A003415(n), A059975(n)), where A003415 is the arithmetic derivative and A059975 is fully additive with a(p) = p-1.
+10
4
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 4, 1, 1, 2, 4, 1, 1, 1, 6, 2, 1, 1, 1, 2, 1, 3, 8, 1, 1, 1, 5, 2, 1, 2, 6, 1, 1, 2, 1, 1, 1, 1, 12, 1, 1, 1, 2, 2, 9, 2, 14, 1, 1, 2, 1, 2, 1, 1, 4, 1, 1, 1, 6, 2, 1, 1, 18, 2, 1, 1, 1, 1, 1, 5, 20, 2, 1, 1, 8, 4, 1, 1, 2, 2, 1, 2, 1, 1, 3, 2, 24, 2, 1, 2, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1
OFFSET
1,4
LINKS
FORMULA
For n >= 1, a(n) is a multiple of A373377(n).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A059975(n) = {my(f = factor(n)); sum(i = 1, #f~, f[i, 2]*(f[i, 1] - 1)); };
A373378(n) = gcd(A003415(n), A059975(n));
CROSSREFS
Cf. A368998 (positions of even terms), A368999 (of odd terms).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 05 2024
STATUS
approved
a(n) = 1 if both A001414(n) and A003415(n) are even, otherwise 0, where A001414 is the sum of prime factors with repetition, and A003415 is the arithmetic derivative.
+10
3
1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1
OFFSET
1
FORMULA
a(n) = A059841(A373364(n)).
a(n) = A356163(n) * A358680(n).
a(n) = A353374(n) + A253513(n)*A353374(n/8). [With shortcut + and *]
PROG
(PARI)
A353374(n) = (!(bigomega(n)%2) && !(valuation(n, 2)%2));
A373374(n) = (A353374(n) || (!(n%8) && A353374(n/8)));
(PARI)
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414.
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A373374(n) = !(gcd(A001414(n), A003415(n))%2);
CROSSREFS
Characteristic function of A373375, whose complement A373376 gives the positions of 0's.
Positions of even terms in A373364.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 03 2024
STATUS
approved
Lexicographically earliest infinite sequence such that a(i) = a(j) => A003415(i) = A003415(j), A085731(i) = A085731(j) and A107463(i) = A107463(j), for all i, j >= 1.
+10
3
1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 28, 40, 41, 42, 2, 43, 2, 44, 45, 46, 47, 48, 2, 49, 50, 51, 2, 52, 2, 53, 54, 55, 47, 56, 2, 57, 58, 59, 2, 60, 41, 61, 62, 63, 2, 64, 37, 65, 66, 67, 68, 69, 2, 70, 71, 72
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of the triple [A003415(n), A085731(n), A107463(n)].
For all i, j >= 1:
A305800(i) = A305800(j) => a(i) = a(j),
a(i) = a(j) => A369051(i) = A369051(j),
a(i) = a(j) => A373363(i) = A373363(j),
a(i) = a(j) => A373364(i) = A373364(j).
Starts to differ from A300235 at n=153. - R. J. Mathar, Jun 06 2024
LINKS
PROG
(PARI)
up_to = 100000;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A085731(n) = gcd(A003415(n), n);
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]);
A107463(n) = if(n<=1, n, if(isprime(n), 1, A001414(n)));
Aux373379(n) = [A003415(n), A085731(n), A107463(n)];
v373379 = rgs_transform(vector(up_to, n, Aux373379(n)));
A373379(n) = v373379[n];
CROSSREFS
Differs from A305895, A327931, and A353560 for the first time at n=1610, where a(1610) = 1112, while A305895(1610) = A327931(1610) = A353560(1610) = 1210.
Cf. also A373150, A373152, A373380.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 03 2024
STATUS
approved

Search completed in 0.009 seconds