Displaying 1-10 of 12 results found.
1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 2, 2, 12, 13, 14, 2, 2, 13, 15, 16, 17, 2, 2, 2, 18, 19, 20, 21, 22, 2, 23, 24, 2, 2, 25, 2, 26, 2, 27, 2, 28, 19, 29, 30, 31, 2, 2, 24, 2, 32, 33, 2, 3, 2, 34, 35, 36, 37, 2, 2, 12, 38, 2, 2, 39, 2, 40, 2, 41, 37, 42, 2, 28, 43, 44, 2, 45, 32, 46, 47, 2, 2, 2, 48, 26, 49, 50, 51, 2, 2, 2, 2, 52
COMMENTS
Restricted growth sequence transform of the triple [ A373145(n), A373362(n), A373364(n)], i.e., the triple [gcd(x, y), gcd(x, z), gcd(y, z)], where x= A001414(n), y= A003415(n), z= A276085(n).
For all i, j >= 1:
PROG
(PARI)
up_to = 100000;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]);
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1, primepi(f[k, 1]-1), prime(i))); };
v373380 = rgs_transform(vector(up_to, n, Aux373380(n)));
Numbers k such that A001414(k) and A003415(k) are both multiples of 3, where A001414 is the sum of prime factors with repetition, and A003415 is the arithmetic derivative.
+10
9
1, 8, 9, 14, 20, 26, 27, 35, 38, 44, 50, 62, 64, 65, 68, 72, 74, 77, 81, 86, 92, 95, 110, 112, 116, 119, 122, 125, 126, 134, 143, 146, 155, 158, 160, 161, 164, 170, 180, 185, 188, 194, 196, 203, 206, 208, 209, 212, 215, 216, 218, 221, 230, 234, 236, 242, 243, 254, 275, 278, 280, 284, 287, 290, 299, 302, 304, 305
COMMENTS
A multiplicative semigroup; if m and n are in the sequence then so is m*n.
CROSSREFS
Positions of multiples of 3 in A373364.
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 2, 1, 2, 2, 1, 1, 2, 1, 1, 3, 1, 3, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 1, 2, 1, 1, 4, 1, 1, 1, 6, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 4, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 3, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3
PROG
(PARI)
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]);
A059975(n) = {my(f = factor(n)); sum(i = 1, #f~, f[i, 2]*(f[i, 1] - 1)); };
Numbers whose sum of prime factors (with repetition, A001414) and arithmetic derivative ( A003415) are both even.
+10
5
1, 4, 8, 9, 15, 16, 21, 25, 32, 33, 35, 36, 39, 49, 51, 55, 57, 60, 64, 65, 69, 72, 77, 81, 84, 85, 87, 91, 93, 95, 100, 111, 115, 119, 120, 121, 123, 128, 129, 132, 133, 135, 140, 141, 143, 144, 145, 155, 156, 159, 161, 168, 169, 177, 183, 185, 187, 189, 196, 200, 201, 203, 204, 205, 209, 213, 215, 217, 219, 220, 221
COMMENTS
Numbers k such that sopfr(k) and k' are both even.
A multiplicative semigroup; if m and n are in the sequence then so is m*n.
CROSSREFS
Positions of even terms in A373364.
a(n) = gcd( A001414(n), A064097(n)), where A001414 is the sum of prime factors with repetition, and A064097 is a quasi-logarithm defined inductively by a(1) = 0 and a(p) = 1 + a(p-1) if p is prime and a(n*m) = a(n) + a(m) if m,n > 1.
+10
4
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 3, 1, 1, 2, 1, 5, 7, 1, 1, 2, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 8, 1, 2, 1, 1, 1, 1, 1, 1, 6, 2, 8, 1, 7, 1, 2, 1, 1, 1, 1, 1, 1, 9, 2, 1, 1, 4, 1, 1, 2, 2, 9, 1, 1, 1, 1, 1, 9, 1, 1, 3, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3
COMMENTS
As A001414 and A064097 are both fully additive sequences, all sequences that give the positions of multiples of some k > 1 in this sequence are closed under multiplication.
0, 1, 1, 2, 1, 1, 1, 3, 2, 7, 1, 1, 1, 1, 8, 4, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 2, 1, 12, 2, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 8, 1, 2, 1, 1, 2, 1, 1, 1, 6, 6, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 2, 2, 1, 8, 1, 1, 1, 20, 1, 2, 1, 12, 1, 1, 1, 1, 14, 1, 1, 1, 1, 1
COMMENTS
All sequences that give the positions of multiples of some natural number k in this sequence are closed under multiplication because the constituent sequences A001414, A003415, and A276085 also have the same property.
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1, primepi(f[k, 1]-1), prime(i))); };
Numbers k such that gcd( A001414(k), A003415(k)) is odd, where A001414 is the sum of prime factors with repetition, and A003415 is the arithmetic derivative.
+10
4
2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 17, 18, 19, 20, 22, 23, 24, 26, 27, 28, 29, 30, 31, 34, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 52, 53, 54, 56, 58, 59, 61, 62, 63, 66, 67, 68, 70, 71, 73, 74, 75, 76, 78, 79, 80, 82, 83, 86, 88, 89, 90, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109
COMMENTS
Numbers k such that sopfr(k) and k' are not both even.
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 4, 1, 1, 2, 4, 1, 1, 1, 6, 2, 1, 1, 1, 2, 1, 3, 8, 1, 1, 1, 5, 2, 1, 2, 6, 1, 1, 2, 1, 1, 1, 1, 12, 1, 1, 1, 2, 2, 9, 2, 14, 1, 1, 2, 1, 2, 1, 1, 4, 1, 1, 1, 6, 2, 1, 1, 18, 2, 1, 1, 1, 1, 1, 5, 20, 2, 1, 1, 8, 4, 1, 1, 2, 2, 1, 2, 1, 1, 3, 2, 24, 2, 1, 2, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1
FORMULA
For n >= 1, a(n) is a multiple of A373377(n).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A059975(n) = {my(f = factor(n)); sum(i = 1, #f~, f[i, 2]*(f[i, 1] - 1)); };
a(n) = 1 if both A001414(n) and A003415(n) are even, otherwise 0, where A001414 is the sum of prime factors with repetition, and A003415 is the arithmetic derivative.
+10
3
1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1
PROG
(PARI)
A353374(n) = (!(bigomega(n)%2) && !(valuation(n, 2)%2));
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
CROSSREFS
Characteristic function of A373375, whose complement A373376 gives the positions of 0's.
Positions of even terms in A373364.
1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 28, 40, 41, 42, 2, 43, 2, 44, 45, 46, 47, 48, 2, 49, 50, 51, 2, 52, 2, 53, 54, 55, 47, 56, 2, 57, 58, 59, 2, 60, 41, 61, 62, 63, 2, 64, 37, 65, 66, 67, 68, 69, 2, 70, 71, 72
PROG
(PARI)
up_to = 100000;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]);
v373379 = rgs_transform(vector(up_to, n, Aux373379(n)));
Search completed in 0.009 seconds
|