[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a373361 -id:a373361
     Sort: relevance | references | number | modified | created      Format: long | short | data
Primorial base log-function: fully additive with a(p) = p#/p, where p# = A034386(p).
+0
168
0, 1, 2, 2, 6, 3, 30, 3, 4, 7, 210, 4, 2310, 31, 8, 4, 30030, 5, 510510, 8, 32, 211, 9699690, 5, 12, 2311, 6, 32, 223092870, 9, 6469693230, 5, 212, 30031, 36, 6, 200560490130, 510511, 2312, 9, 7420738134810, 33, 304250263527210, 212, 10, 9699691, 13082761331670030, 6, 60, 13, 30032, 2312, 614889782588491410, 7, 216, 33, 510512, 223092871, 32589158477190044730, 10
OFFSET
1,3
COMMENTS
Completely additive with a(p^e) = e * A002110(A000720(p)-1).
This is a left inverse of A276086 ("primorial base exp-function"), hence the name "primorial base log-function". When the domain is restricted to the terms of A048103, this works also as a right inverse, as A276086(a(A048103(n))) = A048103(n) for all n >= 1. - Antti Karttunen, Apr 24 2022
On average, every third term is a multiple of 4. See A369001. - Antti Karttunen, May 26 2024
FORMULA
a(1) = 0; for n > 1, a(n) = a(A028234(n)) + (A067029(n) * A002110(A055396(n)-1)).
a(1) = 0, a(n) = (e1*A002110(i1-1) + ... + ez*A002110(iz-1)) when n = prime(i1)^e1 * ... * prime(iz)^ez.
Other identities.
For all n >= 0:
a(A276086(n)) = n.
a(A000040(1+n)) = A002110(n).
a(A002110(1+n)) = A143293(n).
From Antti Karttunen, Apr 24 & Apr 29 2022: (Start)
a(A283477(n)) = A283985(n).
a(A108951(n)) = A346105(n). [The latter has a similar additive formula as this sequence, but instead of primorials, uses their partial sums]
When applied to sequences where a certain subset of the divisors of n has been multiplicatively encoded with the help of A276086, this yields a corresponding number-theoretical sequence, i.e. completes their computation:
a(A319708(n)) = A001065(n) and a(A353564(n)) = A051953(n).
a(A329350(n)) = A069359(n) and a(A329380(n)) = A323599(n).
In the following group, the sum of the rhs-sequences is n [on each row, as say, A328841(n)+A328842(n)=n], because the pointwise product of the corresponding lhs-sequences is A276086:
a(A053669(n)) = A053589(n) and a(A324895(n)) = A276151(n).
a(A328571(n)) = A328841(n) and a(A328572(n)) = A328842(n).
a(A351231(n)) = A351233(n) and a(A327858(n)) = A351234(n).
a(A351251(n)) = A351253(n) and a(A324198(n)) = A351254(n).
The sum or difference of the rhs-sequences is A108951:
a(A344592(n)) = A346092(n) and a(A346091(n)) = A346093(n).
a(A346106(n)) = A346108(n) and a(A346107(n)) = A346109(n).
Here the two sequences are inverse permutations of each other:
a(A328624(n)) = A328625(n) and a(A328627(n)) = A328626(n).
a(A346102(n)) = A328622(n) and a(A346233(n)) = A328623(n).
a(A346101(n)) = A289234(n). [Self-inverse]
Other correspondences:
a(A324350(x,y)) = A324351(x,y).
a(A003961(A276086(n))) = A276154(n). [The primorial base left shift]
a(A276076(n)) = A351576(n). [Sequence reinterpreting factorial base representation as a primorial base representation]
(End)
MATHEMATICA
nn = 60; b = MixedRadix[Reverse@ Prime@ Range@ PrimePi[nn + 1]]; Table[FromDigits[#, b] &@ Reverse@ If[n == 1, {0}, Function[k, ReplacePart[Table[0, {PrimePi[k[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, k]]@ FactorInteger@ n], {n, nn}] (* Version 10.2, or *)
f[w_List] := Total[Times @@@ Transpose@ {Map[Times @@ # &, Prime@ Range@ Range[0, Length@ w - 1]], Reverse@ w}]; Table[f@ Reverse@ If[n == 1, {0}, Function[k, ReplacePart[Table[0, {PrimePi[k[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, k]]@ FactorInteger@ n], {n, 60}] (* Michael De Vlieger, Aug 30 2016 *)
PROG
(Scheme, with memoization-macro definec)
(definec (A276085 n) (cond ((= 1 n) (- n 1)) (else (+ (* (A067029 n) (A002110 (+ -1 (A055396 n)))) (A276085 (A028234 n))))))
(PARI) A276085(n) = { my(f = factor(n), pr=1, i=1, s=0); for(k=1, #f~, while(i <= primepi(f[k, 1])-1, pr *= prime(i); i++); s += f[k, 2]*pr); (s); }; \\ Antti Karttunen, Nov 11 2024
(Python)
from sympy import primorial, primepi, factorint
def a002110(n):
return 1 if n<1 else primorial(n)
def a(n):
f=factorint(n)
return sum(f[i]*a002110(primepi(i) - 1) for i in f)
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 22 2017
CROSSREFS
A left inverse of A276086.
Positions of multiples of k in this sequence, for k=2, 3, 4, 5, 8, 27, 3125: A003159, A339746, A369002, A373140, A373138, A377872, A377878.
Cf. A036554 (positions of odd terms), A035263, A096268 (parity of terms).
Cf. A372575 (rgs-transform), A372576 [a(n) mod 360], A373842 [= A003415(a(n))].
Cf. A373145 [= gcd(A003415(n), a(n))], A373361 [= gcd(n, a(n))], A373362 [= gcd(A001414(n), a(n))], A373485 [= gcd(A083345(n), a(n))], A373835 [= gcd(bigomega(n), a(n))], and also A373367 and A373147 [= A003415(n) mod a(n)], A373148 [= a(n) mod A003415(n)].
Other completely additive sequences with primes p mapped to a function of p include: A001222 (with a(p)=1), A001414 (with a(p)=p), A059975 (with a(p)=p-1), A341885 (with a(p)=p*(p+1)/2), A373149 (with a(p)=prevprime(p)), A373158 (with a(p)=p#).
Cf. also A276075 for factorial base and A048675, A054841 for base-2 and base-10 analogs.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 21 2016
EXTENSIONS
Name amended by Antti Karttunen, Apr 24 2022
Name simplified, the old name moved to the comments - Antti Karttunen, Jun 23 2024
STATUS
approved
a(n) = gcd(n, A059975(n)), where A059975 is fully additive with a(p) = p-1.
+0
6
1, 1, 1, 2, 1, 3, 1, 1, 1, 5, 1, 4, 1, 7, 3, 4, 1, 1, 1, 2, 1, 11, 1, 1, 1, 13, 3, 4, 1, 1, 1, 1, 3, 17, 5, 6, 1, 19, 1, 1, 1, 3, 1, 4, 1, 23, 1, 6, 1, 1, 3, 2, 1, 1, 1, 1, 1, 29, 1, 4, 1, 31, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 37, 5, 4, 1, 3, 1, 8, 1, 41, 1, 2, 5, 43, 3, 1, 1, 9, 1, 4, 1, 47, 1, 1, 1, 1, 1, 10
OFFSET
1,4
LINKS
PROG
(PARI)
A059975(n) = {my(f = factor(n)); sum(i = 1, #f~, f[i, 2]*(f[i, 1] - 1)); };
A373368(n) = gcd(n, A059975(n));
CROSSREFS
Cf. A059975, A108269 (positions of even terms), A359794 (of odd terms), A359832 (parity of terms).
Cf. also A082299, A373361, A373369.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 05 2024
STATUS
approved
a(n) = gcd(A001414(n), A276085(n)), where A001414 is the sum of prime factors with repetition, and A276085 is the primorial base log-function.
+0
11
0, 1, 1, 2, 1, 1, 1, 3, 2, 7, 1, 1, 1, 1, 8, 4, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 2, 1, 12, 2, 1, 1, 8, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 4, 17, 1, 1, 8, 1, 2, 1, 1, 2, 1, 1, 1, 6, 6, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 9, 1, 1, 4, 1, 1, 2, 2, 1, 8, 1, 1, 1, 20, 1, 2, 1, 12, 1, 1, 1, 1, 14, 1, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
As A001414 and A276085 are both fully additive sequences, all sequences that give the positions of multiples of some k > 1 in this sequence are closed under multiplication: For example, A373373, which gives the indices of multiples of 3.
LINKS
PROG
(PARI)
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414.
A002110(n) = prod(i=1, n, prime(i));
A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); };
A373362(n) = gcd(A001414(n), A276085(n));
CROSSREFS
Cf. A345452 (positions of even terms), A373373 (positions of multiples of 3).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 02 2024
STATUS
approved

Search completed in 0.005 seconds