[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a316652 -id:a316652
     Sort: relevance | references | number | modified | created      Format: long | short | data
Schroeder's fourth problem; also series-reduced rooted trees with n labeled leaves; also number of total partitions of n.
(Formerly M3613 N1465)
+10
105
0, 1, 1, 4, 26, 236, 2752, 39208, 660032, 12818912, 282137824, 6939897856, 188666182784, 5617349020544, 181790703209728, 6353726042486272, 238513970965257728, 9571020586419012608, 408837905660444010496, 18522305410364986906624
OFFSET
0,4
COMMENTS
a(n) is the number of labeled series-reduced rooted trees with n leaves (root has degree 0 or >= 2); a(n-1) = number of labeled series-reduced trees with n leaves. Also number of series-parallel networks with n labeled edges, divided by 2.
A total partition of n is essentially what is meant by the first part of the previous line: take the numbers 12...n, and partition them into at least two blocks. Partition each block with at least 2 elements into at least two blocks. Repeat until only blocks of size 1 remain. (See the reference to Stanley, Vol. 2.) - N. J. A. Sloane, Aug 03 2016
Polynomials with coefficients in triangle A008517, evaluated at 2. - Ralf Stephan, Dec 13 2004
Row sums of unsigned A134685. - Tom Copeland, Oct 11 2008
Row sums of A134991, which contains an e.g.f. for this sequence and its compositional inverse. - Tom Copeland, Jan 24 2018
From Gus Wiseman, Dec 28 2019: (Start)
Also the number of singleton-reduced phylogenetic trees with n labels. A phylogenetic tree is a series-reduced rooted tree whose leaves are (usually disjoint) nonempty sets. It is singleton-reduced if no non-leaf node covers only singleton branches. For example, the a(4) = 26 trees are:
{1,2,3,4} {{1},{2},{3,4}} {{1},{2,3,4}}
{{1},{2,3},{4}} {{1,2},{3,4}}
{{1,2},{3},{4}} {{1,2,3},{4}}
{{1},{2,4},{3}} {{1,2,4},{3}}
{{1,3},{2},{4}} {{1,3},{2,4}}
{{1,4},{2},{3}} {{1,3,4},{2}}
{{1,4},{2,3}}
{{{1},{2,3}},{4}}
{{{1,2},{3}},{4}}
{{1},{{2},{3,4}}}
{{1},{{2,3},{4}}}
{{{1},{2,4}},{3}}
{{{1,2},{4}},{3}}
{{1},{{2,4},{3}}}
{{{1,3},{2}},{4}}
{{{1},{3,4}},{2}}
{{{1,3},{4}},{2}}
{{{1,4},{2}},{3}}
{{{1,4},{3}},{2}}
(End)
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 224.
J. Felsenstein, Inferring phyogenies, Sinauer Associates, 2004; see p. 25ff.
L. R. Foulds and R. W. Robinson, Enumeration of phylogenetic trees without points of degree two. Ars Combin. 17 (1984), A, 169-183. Math. Rev. 85f:05045
T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 197.
E. Schroeder, Vier combinatorische Probleme, Z. f. Math. Phys., 15 (1870), 361-376.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see "total partitions", Example 5.2.5, Equation (5.27), and also Fig. 5-3 on page 14. See also the Notes on page 66.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..375 [Shortened file because terms grow rapidly: see Sloane link below for additional terms]
Mohamed Barakat, Reimer Behrends, Christopher Jefferson, Lukas Kühne, and Martin Leuner, On the generation of rank 3 simple matroids with an application to Terao's freeness conjecture, arXiv:1907.01073 [math.CO], 2019.
Frédérique Bassino, Mathilde Bouvel, Valentin Féray, Lucas Gerin, Mickaël Maazoun, and Adeline Pierrot, Random cographs: Brownian graphon limit and asymptotic degree distribution, arXiv:1907.08517 [math.CO], 2019.
A. Blass, N. Dobrinen, and D. Raghavan, The next best thing to a P-point, arXiv preprint arXiv:1308.3790 [math.LO], 2013.
P. J. Cameron, Some treelike objects, Quart. J. Math. Oxford, 38 (1987), 155-183. MR0891613 (89a:05009). See p. 155 and 159.
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
L. Carlitz and J. Riordan, The number of labeled two-terminal series-parallel networks, Duke Math. J. 23 (1956), 435-445 (the sequence called {A_n}).
Tom Copeland, Comments on A000311
Brian Drake, Ira M. Gessel, and Guoce Xin, Three Proofs and a Generalization of the Goulden-Litsyn-Shevelev Conjecture on a Sequence Arising in Algebraic Geometry, J. of Integer Sequences, Vol. 10 (2007), Article 07.3.7
John Engbers, David Galvin, and Clifford Smyth, Restricted Stirling and Lah numbers and their inverses, arXiv:1610.05803 [math.CO], 2016.
J. Felsenstein, The number of evolutionary trees, Systematic Zoology, 27 (1978), 27-33. (Annotated scanned copy)
J. Felsenstein, The number of evolutionary trees, Systematic Biology, 27 (1978), pp. 27-33, 1978.
S. R. Finch, Series-parallel networks, July 7, 2003. [Cached copy, with permission of the author]
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 129
M. D. Hendy, C. H. C. Little, David Penny, Comparing trees with pendant vertices labelled, SIAM J. Appl. Math. 44 (5) (1984) Table 1
D. Jackson, A. Kempf, and A. Morales, A robust generalization of the Legendre transform for QFT, arXiv:1612.0046 [hep-th], 2017.
V. P. Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. Southern Calif., 2012.
B. R. Jones, On tree hook length formulas, Feynman rules and B-series, Master's thesis, Simon Fraser University, 2014.
Vladimir V. Kruchinin, The method for obtaining expressions for coefficients of reverse generating functions, arXiv:1211.3244 [math.CO], 2012.
Z. A. Lomnicki, Two-terminal series-parallel networks, Adv. Appl. Prob., 4 (1972), 109-150.
Dragan Mašulović, Big Ramsey spectra of countable chains, arXiv:1912.03022 [math.CO], 2019.
Arnau Mir, Francesc Rossello, and Lucia Rotger, Sound Colless-like balance indices for multifurcating trees, arXiv:1805.01329 [q-bio.PE], 2018.
J. W. Moon, Some enumerative results on series-parallel networks, Annals Discrete Math., 33 (1987), 199-226.
T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
F. Murtagh, Counting dendrograms: a survey, Discrete Appl. Math., 7 (1984), 191-199.
P. Regner, Phylogenetic Trees: Selected Combinatorial Problems, Master's Thesis, 2012, Institute of Discrete Mathematics and Geometry, TU Vienna, pp. 50-59.
J. Riordan, The blossoming of Schröder's fourth problem, Acta Math., 137 (1976), 1-16.
E. Schröder, Vier combinatorische Probleme, Z. f. Math. Phys., 15 (1870), 361-376. [Annotated scanned copy]
J. Taylor, Formal group laws and hypergraph colorings, doctoral thesis, Univ. of Wash., 2016, p. 95. [Tom Copeland, Dec 20 2018]
FORMULA
E.g.f. A(x) satisfies exp A(x) = 2*A(x) - x + 1.
a(0)=0, a(1)=a(2)=1; for n >= 2, a(n+1) = (n+2)*a(n) + 2*Sum_{k=2..n-1} binomial(n, k)*a(k)*a(n-k+1).
a(1)=1; for n>1, a(n) = -(n-1) * a(n-1) + Sum_{k=1..n-1} binomial(n, k) * a(k) * a(n-k). - Michael Somos, Jun 04 2012
From the umbral operator L in A135494 acting on x^n comes, umbrally, (a(.) + x)^n = (n * x^(n-1) / 2) - (x^n / 2) + Sum_{j>=1} j^(j-1) * (2^(-j) / j!) * exp(-j/2) * (x + j/2)^n giving a(n) = 2^(-n) * Sum_{j>=1} j^(n-1) * ((j/2) * exp(-1/2))^j / j! for n > 1. - Tom Copeland, Feb 11 2008
Let h(x) = 1/(2-exp(x)), an e.g.f. for A000670, then the n-th term of A000311 is given by ((h(x)*d/dx)^n)x evaluated at x=0, i.e., A(x) = exp(x*a(.)) = exp(x*h(u)*d/du) u evaluated at u=0. Also, dA(x)/dx = h(A(x)). - Tom Copeland, Sep 05 2011 (The autonomous differential eqn. here is also on p. 59 of Jones. - Tom Copeland, Dec 16 2019)
A134991 gives (b.+c.)^n = 0^n, for (b_n)=A000311(n+1) and (c_0)=1, (c_1)=-1, and (c_n)=-2* A000311(n) = -A006351(n) otherwise. E.g., umbrally, (b.+c.)^2 = b_2*c_0 + 2 b_1*c_1 + b_0*c_2 =0. - Tom Copeland, Oct 19 2011
a(n) = Sum_{k=1..n-1} (n+k-1)!*Sum_{j=1..k} (1/(k-j)!)*Sum_{i=0..j} 2^i*(-1)^i*Stirling2(n+j-i-1, j-i)/((n+j-i-1)!*i!), n>1, a(0)=0, a(1)=1. - Vladimir Kruchinin, Jan 28 2012
Using L. Comtet's identity and D. Wasserman's explicit formula for the associated Stirling numbers of second kind (A008299) one gets: a(n) = Sum_{m=1..n-1} Sum_{i=0..m} (-1)^i * binomial(n+m-1,i) * Sum_{j=0..m-i} (-1)^j * ((m-i-j)^(n+m-1-i))/(j! * (m-i-j)!). - Peter Regner, Oct 08 2012
G.f.: x/Q(0), where Q(k) = 1 - k*x - x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 01 2013
G.f.: x*Q(0), where Q(k) = 1 - x*(k+1)/(x*(k+1) - (1-k*x)*(1-x-k*x)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 11 2013
a(n) ~ n^(n-1) / (sqrt(2) * exp(n) * (2*log(2)-1)^(n-1/2)). - Vaclav Kotesovec, Jan 05 2014
E.g.f. A(x) satisfies d/dx A(x) = 1 / (1 + x - 2 * A(x)). - Michael Somos, Oct 25 2014
O.g.f.: Sum_{n>=0} x / Product_{k=0..n} (2 - k*x). - Paul D. Hanna, Oct 27 2014
E.g.f.: (x - 1 - 2 LambertW(-exp((x-1)/2) / 2)) / 2. - Vladimir Reshetnikov, Oct 16 2015 (This e.g.f. is given in A135494, the entry alluded to in my 2008 formula, and in A134991 along with its compositional inverse. - Tom Copeland, Jan 24 2018)
a(0) = 0, a(1) = 1; a(n) = n! * [x^n] exp(Sum_{k=1..n-1} a(k)*x^k/k!). - Ilya Gutkovskiy, Oct 17 2017
a(n+1) = Sum_{k=0..n} A269939(n, k) for n >= 1. - Peter Luschny, Feb 15 2021
EXAMPLE
E.g.f.: A(x) = x + x^2/2! + 4*x^3/3! + 26*x^4/4! + 236*x^5/5! + 2752*x^6/6! + ...
where exp(A(x)) = 1 - x + 2*A(x), and thus
Series_Reversion(A(x)) = x - x^2/2! - x^3/3! - x^4/4! - x^5/5! - x^6/6! + ...
O.g.f.: G(x) = x + x^2 + 4*x^3 + 26*x^4 + 236*x^5 + 2752*x^6 + 39208*x^7 + ...
where
G(x) = x/2 + x/(2*(2-x)) + x/(2*(2-x)*(2-2*x)) + x/(2*(2-x)*(2-2*x)*(2-3*x)) + x/(2*(2-x)*(2-2*x)*(2-3*x)*(2-4*x)) + x/(2*(2-x)*(2-2*x)*(2-3*x)*(2-4*x)*(2-5*x)) + ...
From Gus Wiseman, Dec 28 2019: (Start)
A rooted tree is series-reduced if it has no unary branchings, so every non-leaf node covers at least two other nodes. The a(4) = 26 series-reduced rooted trees with 4 labeled leaves are the following. Each bracket (...) corresponds to a non-leaf node.
(1234) ((12)34) ((123)4)
(1(23)4) (1(234))
(12(34)) ((124)3)
(1(24)3) ((134)2)
((13)24) (((12)3)4)
((14)23) ((1(23))4)
((12)(34))
(1((23)4))
(1(2(34)))
(((12)4)3)
((1(24))3)
(1((24)3))
(((13)2)4)
((13)(24))
(((13)4)2)
((1(34))2)
(((14)2)3)
((14)(23))
(((14)3)2)
(End)
MAPLE
M:=499; a:=array(0..500); a[0]:=0; a[1]:=1; a[2]:=1; for n from 0 to 2 do lprint(n, a[n]); od: for n from 2 to M do a[n+1]:=(n+2)*a[n]+2*add(binomial(n, k)*a[k]*a[n-k+1], k=2..n-1); lprint(n+1, a[n+1]); od:
Order := 50; t1 := solve(series((exp(A)-2*A-1), A)=-x, A); A000311 := n-> n!*coeff(t1, x, n);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(combinat[multinomial](n, n-i*j, i$j)/j!*
a(i)^j*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> `if`(n<2, n, b(n, n-1)):
seq(a(n), n=0..40); # Alois P. Heinz, Jan 28 2016
# faster program:
b:= proc(n, i) option remember;
`if`(i=0 and n=0, 1, `if`(i<=0 or i>n, 0,
i*b(n-1, i) + (n+i-1)*b(n-1, i-1))) end:
a:= n -> `if`(n<2, n, add(b(n-1, i), i=0..n-1)):
seq(a(n), n=0..40); # Peter Luschny, Feb 15 2021
MATHEMATICA
nn = 19; CoefficientList[ InverseSeries[ Series[1+2a-E^a, {a, 0, nn}], x], x]*Range[0, nn]! (* Jean-François Alcover, Jul 21 2011 *)
a[ n_] := If[ n < 1, 0, n! SeriesCoefficient[ InverseSeries[ Series[ 1 + 2 x - Exp[x], {x, 0, n}]], n]]; (* Michael Somos, Jun 04 2012 *)
a[n_] := (If[n < 2, n, (column = ConstantArray[0, n - 1]; column[[1]] = 1; For[j = 3, j <= n, j++, column = column * Flatten[{Range[j - 2], ConstantArray[0, (n - j) + 1]}] + Drop[Prepend[column, 0], -1] * Flatten[{Range[j - 1, 2*j - 3], ConstantArray[0, n - j]}]; ]; Sum[column[[i]], {i, n - 1}] )]); Table[a[n], {n, 0, 20}] (* Peter Regner, Oct 05 2012, after a formula by Felsenstein (1978) *)
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*a[i]^j *b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := If[n<2, n, b[n, n-1]]; Table[ a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 07 2016, after Alois P. Heinz *)
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mtot[m_]:=Prepend[Join@@Table[Tuples[mtot/@p], {p, Select[sps[m], 1<Length[#]<Length[m]&]}], m];
Table[Length[mtot[Range[n]]], {n, 0, 6}] (* Gus Wiseman, Dec 28 2019 *)
(* Lengthy but easy to follow *)
lead[_, n_ /; n < 3] := 0
lead[h_, n_] := Module[{p, i},
p = Position[h, {___}];
Sum[MapAt[{#, n} &, h, p[[i]]], {i, Length[p]}]
]
follow[h_, n_] := Module[{r, i},
r = Replace[Position[h, {___}], {a__} -> {a, -1}, 1];
Sum[Insert[h, n, r[[i]]], {i, Length[r]}]
]
marry[_, n_ /; n < 3] := 0
marry[h_, n_] := Module[{p, i},
p = Position[h, _Integer];
Sum[MapAt[{#, n} &, h, p[[i]]], {i, Length[p]}]
]
extend[a_ + b_, n_] := extend[a, n] + extend[b, n]
extend[a_, n_] := lead[a, n] + follow[a, n] + marry[a, n]
hierarchies[1] := hierarchies[1] = extend[hier[{}], 1]
hierarchies[n_] := hierarchies[n] = extend[hierarchies[n - 1], n] (* Daniel Geisler, Aug 22 2022 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, for( i=1, n, A = Pol(exp(A + x * O(x^i)) - A + x - 1)); n! * polcoeff(A, n))}; /* Michael Somos, Jan 15 2004 */
(PARI) {a(n) = my(A); if( n<0, 0, A = O(x); for( i=1, n, A = intformal( 1 / (1 + x - 2*A))); n! * polcoeff(A, n))}; /* Michael Somos, Oct 25 2014 */
(PARI) {a(n) = n! * polcoeff(serreverse(1+2*x - exp(x +x^2*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Oct 27 2014
(PARI) \p100 \\ set precision
{A=Vec(sum(n=0, 600, 1.*x/prod(k=0, n, 2 - k*x + O(x^31))))}
for(n=0, 25, print1(if(n<1, 0, round(A[n])), ", ")) \\ Paul D. Hanna, Oct 27 2014
(Maxima) a(n):=if n=1 then 1 else sum((n+k-1)!*sum(1/(k-j)!*sum((2^i*(-1)^(i)*stirling2(n+j-i-1, j-i))/((n+j-i-1)!*i!), i, 0, j), j, 1, k), k, 1, n-1); /* Vladimir Kruchinin, Jan 28 2012 */
(Python)
from functools import lru_cache
from math import comb
@lru_cache(maxsize=None)
def A000311(n): return n if n <= 1 else -(n-1)*A000311(n-1)+comb(n, m:=n+1>>1)*(0 if n&1 else A000311(m)**2) + (sum(comb(n, i)*A000311(i)*A000311(n-i) for i in range(1, m))<<1) # Chai Wah Wu, Nov 10 2022
CROSSREFS
Row sums of A064060 and A134991.
The unlabeled version is A000669.
Unlabeled phylogenetic trees are A141268.
The node-counting version is A060356, with unlabeled version A001678.
Phylogenetic trees with n labels are A005804.
Chains of set partitions are A005121, with maximal version A002846.
Inequivalent leaf-colorings of series-reduced rooted trees are A318231.
For n >= 2, A000311(n) = A006351(n)/2 = A005640(n)/2^(n+1).
Cf. A000110, A000669 = unlabeled hierarchies, A119649.
KEYWORD
nonn,core,easy,nice
EXTENSIONS
Name edited by Gus Wiseman, Dec 28 2019
STATUS
approved
Triangle read by rows: T(n,k) is the number of inequivalent colorings of lone-child-avoiding rooted trees with n colored leaves using exactly k colors.
+10
45
1, 1, 1, 2, 3, 2, 5, 17, 12, 5, 12, 73, 95, 44, 12, 33, 369, 721, 512, 168, 33, 90, 1795, 5487, 5480, 2556, 625, 90, 261, 9192, 41945, 58990, 36711, 12306, 2342, 261, 766, 47324, 321951, 625088, 516952, 224241, 57155, 8702, 766, 2312, 249164, 2483192, 6593103, 7141755, 3965673, 1283624, 258887, 32313, 2312
OFFSET
1,4
COMMENTS
Only the leaves are colored. Equivalence is up to permutation of the colors.
Lone-child-avoiding rooted trees are also called planted series-reduced trees in some other sequences.
EXAMPLE
Triangle begins:
1;
1, 1;
2, 3, 2;
5, 17, 12, 5;
12, 73, 95, 44, 12;
33, 369, 721, 512, 168, 33;
90, 1795, 5487, 5480, 2556, 625, 90;
261, 9192, 41945, 58990, 36711, 12306, 2342, 261;
766, 47324, 321951, 625088, 516952, 224241, 57155, 8702, 766;
...
From Gus Wiseman, Jan 02 2021: (Start)
Non-isomorphic representatives of the 39 = 5 + 17 + 12 + 5 trees with four colored leaves:
(1111) (1112) (1123) (1234)
(1(111)) (1122) (1(123)) (1(234))
(11(11)) (1(112)) (11(23)) (12(34))
((11)(11)) (11(12)) (12(13)) ((12)(34))
(1(1(11))) (1(122)) (2(113)) (1(2(34)))
(11(22)) (23(11))
(12(11)) ((11)(23))
(12(12)) (1(1(23)))
(2(111)) ((12)(13))
((11)(12)) (1(2(13)))
(1(1(12))) (2(1(13)))
((11)(22)) (2(3(11)))
(1(1(22)))
(1(2(11)))
((12)(12))
(1(2(12)))
(2(1(11)))
(End)
PROG
(PARI) \\ See link above for combinatorial species functions.
cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sExp(x*Ser(v[1..n])), n )); x*Ser(v)}
{my(A=InequivalentColoringsTriangle(cycleIndexSeries(10))); for(n=1, #A~, print(A[n, 1..n]))}
CROSSREFS
The case with only one color is A000669.
Counting by nodes gives A318231.
A labeled version is A319376.
Row sums are A330470.
A000311 counts singleton-reduced phylogenetic trees.
A001678 counts unlabeled lone-child-avoiding rooted trees.
A005121 counts chains of set partitions, with maximal case A002846.
A005804 counts phylogenetic rooted trees with n labels.
A060356 counts labeled lone-child-avoiding rooted trees.
A141268 counts lone-child-avoiding rooted trees with leaves summing to n.
A291636 lists Matula-Goebel numbers of lone-child-avoiding rooted trees.
A316651 counts lone-child-avoiding rooted trees with normal leaves.
A316652 counts lone-child-avoiding rooted trees with strongly normal leaves.
A330465 counts inequivalent leaf-colorings of phylogenetic rooted trees.
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Dec 11 2020
STATUS
approved
Expansion of e.g.f.: -LambertW(-x/(1+x)).
+10
33
0, 1, 0, 3, 4, 65, 306, 4207, 38424, 573057, 7753510, 134046671, 2353898196, 47602871329, 1013794852266, 23751106404495, 590663769125296, 15806094859299329, 448284980183376078, 13515502344669830287
OFFSET
0,4
COMMENTS
Also the number of labeled lone-child-avoiding rooted trees with n nodes. A rooted tree is lone-child-avoiding if it has no unary branchings, meaning every non-leaf node covers at least two other nodes. The unlabeled version is A001678(n + 1). - Gus Wiseman, Jan 20 2020
FORMULA
a(n) = Sum_{k=1..n} (-1)^(n-k)*n!/k!*binomial(n-1, k-1)*k^(k-1). a(n) = Sum_{k=0..n} Stirling1(n, k)*A058863(k). - Vladeta Jovovic, Sep 17 2003
a(n) ~ n^(n-1) * (1-exp(-1))^(n+1/2). - Vaclav Kotesovec, Nov 27 2012
a(n) = n * A108919(n). - Gus Wiseman, Dec 31 2019
EXAMPLE
From Gus Wiseman, Dec 31 2019: (Start)
Non-isomorphic representatives of the a(7) = 4207 trees, written as root[branches], are:
1[2,3[4,5[6,7]]]
1[2,3[4,5,6,7]]
1[2[3,4],5[6,7]]
1[2,3,4[5,6,7]]
1[2,3,4,5[6,7]]
1[2,3,4,5,6,7]
(End)
MAPLE
seq(coeff(series( -LambertW(-x/(1+x)), x, n+1), x, n)*n!, n = 0..20); # G. C. Greubel, Mar 16 2020
MATHEMATICA
CoefficientList[Series[-LambertW[-x/(1+x)], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 27 2012 *)
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
a[n_]:=If[n==1, 1, n*Sum[Times@@a/@Length/@stn, {stn, Select[sps[Range[n-1]], Length[#]>1&]}]];
Array[a, 10] (* Gus Wiseman, Dec 31 2019 *)
PROG
(PARI) { for (n=0, 100, f=n!; a=sum(k=1, n, (-1)^(n - k)*f/k!*binomial(n - 1, k - 1)*k^(k - 1)); write("b060356.txt", n, " ", a); ) } \\ Harry J. Smith, Jul 04 2009
(PARI) my(x='x+O('x^20)); concat([0], Vec(serlaplace(-lambertw(-x/(1+x))))) \\ G. C. Greubel, Feb 19 2018
(GAP) List([0..20], n->Sum([1..n], k->(-1)^(n-k)*Factorial(n)/Factorial(k) *Binomial(n-1, k-1)*k^(k-1))); # Muniru A Asiru, Feb 19 2018
CROSSREFS
Cf. A008297.
Column k=0 of A231602.
The unlabeled version is A001678(n + 1).
The case where the root is fixed is A108919.
Unlabeled rooted trees are counted by A000081.
Lone-child-avoiding rooted trees with labeled leaves are A000311.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.
Singleton-reduced rooted trees are counted by A330951.
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Apr 01 2001
STATUS
approved
Number of series-reduced rooted trees with n leaves spanning an initial interval of positive integers.
+10
30
1, 2, 12, 112, 1444, 24086, 492284, 11910790, 332827136, 10546558146, 373661603588, 14636326974270, 628032444609396, 29296137817622902, 1476092246351259964, 79889766016415899270, 4622371378514020301740, 284719443038735430679268, 18601385258191195218790756
OFFSET
1,2
COMMENTS
A rooted tree is series-reduced if every non-leaf node has at least two branches.
LINKS
FORMULA
From Vaclav Kotesovec, Sep 18 2019: (Start)
a(n) ~ c * d^n * n^(n-1), where d = 1.37392076830840090205551979... and c = 0.41435722857311602982846...
a(n) ~ 2*log(2)*A326396(n)/n. (End)
EXAMPLE
The a(3) = 12 trees:
(1(11)), (111),
(1(12)), (2(11)), (112),
(1(22)), (2(12)), (122),
(1(23)), (2(13)), (3(12)), (123).
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
end:
A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)):
a:= n-> add(add(A(n, k-j)*(-1)^j*binomial(k, j), j=0..k-1), k=1..n):
seq(a(n), n=1..20); # Alois P. Heinz, Sep 18 2018
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
gro[m_]:=If[Length[m]==1, m, Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m], Length[#]>1&])]];
allnorm[n_Integer]:=Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1];
Table[Sum[Length[gro[m]], {m, allnorm[n]}], {n, 5}]
(* Second program: *)
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0,
Sum[Binomial[A[i, k] + j - 1, j] b[n - i*j, i - 1, k], {j, 0, n/i}]]];
A[n_, k_] := If[n < 2, n*k, b[n, n - 1, k]];
a[n_] := Sum[Sum[A[n, k-j]*(-1)^j*Binomial[k, j], {j, 0, k-1}], {k, 1, n}];
Array[a, 20] (* Jean-François Alcover, May 09 2021, after Alois P. Heinz *)
PROG
(PARI) \\ here R(n, k) is A000669, A050381, A220823, ...
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n, k)={my(v=[k]); for(n=2, n, v=concat(v, EulerT(concat(v, [0]))[n])); v}
seq(n)={sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) )} \\ Andrew Howroyd, Sep 14 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 09 2018
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, Sep 14 2018
STATUS
approved
Let f(n) = number of ways to factor n = A001055(n); a(n) = sum of f(k) over all terms k in A025487 that have n factors.
+10
21
1, 4, 12, 47, 170, 750, 3255, 16010, 81199, 448156, 2579626, 15913058, 102488024, 698976419, 4976098729, 37195337408, 289517846210, 2352125666883, 19841666995265, 173888579505200, 1577888354510786, 14820132616197925, 143746389756336173, 1438846957477988926
OFFSET
1,2
COMMENTS
Ways of partitioning an n-multiset with multiplicities some partition of n.
Number of multiset partitions of strongly normal multisets of size n, where a finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities. The (weakly) normal version is A255906. - Gus Wiseman, Dec 31 2019
LINKS
EXAMPLE
a(3) = 12 because there are 3 terms in A025487 with 3 factors, namely 8, 12, 30; and f(8)=3, f(12)=4, f(30)=5 and 3+4+5 = 12.
From Gus Wiseman, Dec 31 2019: (Start)
The a(1) = 1 through a(3) = 12 multiset partitions of strongly normal multisets:
{{1}} {{1,1}} {{1,1,1}}
{{1,2}} {{1,1,2}}
{{1},{1}} {{1,2,3}}
{{1},{2}} {{1},{1,1}}
{{1},{1,2}}
{{1},{2,3}}
{{2},{1,1}}
{{2},{1,3}}
{{3},{1,2}}
{{1},{1},{1}}
{{1},{1},{2}}
{{1},{2},{3}}
(End)
MAPLE
with(numtheory):
g:= proc(n, k) option remember;
`if`(n>k, 0, 1) +`if`(isprime(n), 0,
add(`if`(d>k, 0, g(n/d, d)), d=divisors(n) minus {1, n}))
end:
b:= proc(n, i, l)
`if`(n=0, g(mul(ithprime(t)^l[t], t=1..nops(l))$2),
`if`(i<1, 0, add(b(n-i*j, i-1, [l[], i$j]), j=0..n/i)))
end:
a:= n-> b(n$2, []):
seq(a(n), n=1..10); # Alois P. Heinz, May 26 2013
MATHEMATICA
g[n_, k_] := g[n, k] = If[n > k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d > k, 0, g[n/d, d]], {d, Divisors[n] ~Complement~ {1, n}}]]; b[n_, i_, l_] := If[n == 0, g[p = Product[Prime[t]^l[[t]], {t, 1, Length[l]}], p], If[i < 1, 0, Sum[b[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_] := b[n, n, {}]; Table[Print[an = a[n]]; an, {n, 1, 13}] (* Jean-François Alcover, Dec 12 2013, after Alois P. Heinz *)
PROG
(Python)
from sympy.core.cache import cacheit
from sympy import divisors, isprime, prime
from operator import mul
@cacheit
def g(n, k):
return (0 if n > k else 1) + (0 if isprime(n) else sum(g(n//d, d) for d in divisors(n)[1:-1] if d <= k))
@cacheit
def b(n, i, l):
if n==0:
p = reduce(mul, (prime(t + 1)**l[t] for t in range(len(l))))
return g(p, p)
else:
return 0 if i<1 else sum([b(n - i*j, i - 1, l + [i]*j) for j in range(n//i + 1)])
def a(n):
return b(n, n, [])
for n in range(1, 11): print(a(n)) # Indranil Ghosh, Aug 19 2017, after Maple code
(PARI)
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
D(p, n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=EulerT(v)); Vec(1/prod(k=1, n, 1 - u[k]*x^k + O(x*x^n))-1, -n)/prod(i=1, #v, i^v[i]*v[i]!)}
seq(n)={my(s=0); forpart(p=n, s+=D(p, n)); s} \\ Andrew Howroyd, Dec 30 2020
CROSSREFS
Sequence A035341 counts the ordered cases. Tables A093936 and A095705 distribute the values; e.g. 81199 = 30 + 536 + 3036 + 6181 + 10726 + 11913 + 14548 + 13082 + 21147.
Row sums of A317449.
The uniform case is A317584.
The case with empty intersection is A317755.
The strict case is A317775.
The constant case is A047968.
The set-system case is A318402.
The case of strict parts is A330783.
Multiset partitions of integer partitions are A001970.
Unlabeled multiset partitions are A007716.
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
More terms from Erich Friedman.
81199 from Alford Arnold, Mar 04 2008
a(10) from Alford Arnold, Mar 31 2008
a(10) corrected by Alford Arnold, Aug 07 2008
a(11)-a(13) from Alois P. Heinz, May 26 2013
a(14) from Alois P. Heinz, Sep 27 2014
a(15) from Alois P. Heinz, Jan 10 2015
Terms a(16) and beyond from Andrew Howroyd, Dec 30 2020
STATUS
approved
Number of non-isomorphic series-reduced rooted trees whose leaves are multisets with a total of n elements.
+10
19
1, 4, 14, 87, 608, 5573, 57876, 687938, 9058892, 130851823, 2048654450, 34488422057, 620046639452, 11839393796270, 238984150459124, 5079583100918338, 113299159314626360, 2644085918303683758, 64393240540265515110, 1632731130253043991252, 43013015553755764179000
OFFSET
1,2
COMMENTS
Also inequivalent leaf-colorings of phylogenetic rooted trees with n labels. A phylogenetic rooted tree is a series-reduced rooted tree whose leaves are (usually disjoint) sets.
EXAMPLE
Non-isomorphic representatives of the a(3) = 14 trees:
((1)((1)(1))) ((1)((1)(2))) ((1)((2)(3))) ((2)((1)(1)))
((1)(1)(1)) ((1)(1)(2)) ((1)(2)(3)) ((2)(1,1))
((1)(1,1)) ((1)(1,2)) ((1)(2,3))
(1,1,1) (1,1,2) (1,2,3)
PROG
(PARI) \\ See links in A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(v=vector(n), p=sEulerT(x*sv(1) + O(x*x^n))); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sEulerT(x*Ser(v[1..n])), n ) + polcoef(p, n)); x*Ser(v)}
InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 13 2020
CROSSREFS
The version where leaves are atoms is A318231.
The case with sets as leaves is A330624.
The case with disjoint sets as leaves is A141268.
Labeled versions are A330467 (strongly normal) and A330469 (normal).
The singleton-reduced version is A330470.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 21 2019
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, Dec 13 2020
STATUS
approved
Number of series-reduced rooted trees whose leaves span an initial interval of positive integers with multiplicities the integer partition with Heinz number n.
+10
16
0, 1, 1, 1, 2, 3, 5, 4, 12, 9, 12, 17, 33, 29, 44, 26, 90, 90, 261, 68, 168, 93, 766, 144, 197, 307, 575, 269, 2312, 428, 7068, 236, 625, 1017, 863, 954, 21965, 3409, 2342, 712
OFFSET
1,5
COMMENTS
A rooted tree is series-reduced if every non-leaf node has at least two branches.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
FORMULA
a(prime(n)) = A000669(n).
a(2^n) = A000311(n).
EXAMPLE
Sequence of sets of trees begins:
1:
2: 1
3: (11)
4: (12)
5: (1(11)), (111)
6: (1(12)), (2(11)), (112)
7: (1(1(11))), (1(111)), ((11)(11)), (11(11)), (1111)
8: (1(23)), (2(13)), (3(12)), (123)
9: (1(1(22))), (1(2(12))), (1(122)), (2(1(12))), (2(2(11))), (2(112)), ((11)(22)), ((12)(12)), (11(22)), (12(12)), (22(11)), (1122)
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
gro[m_]:=If[Length[m]==1, m, Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m], Length[#]>1&])]];
Table[Length[gro[Flatten[MapIndexed[Table[#2, {#1}]&, If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]]]]], {n, 20}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jul 09 2018
EXTENSIONS
a(37)-a(40) from Robert Price, Sep 13 2018
STATUS
approved
Number of lone-child-avoiding locally disjoint rooted trees whose leaves form an integer partition of n.
+10
13
1, 2, 4, 11, 27, 80, 218, 654, 1923, 5924, 18310, 58176, 186341, 606814, 1993420, 6618160, 22134640
OFFSET
1,2
COMMENTS
A rooted tree is lone-child-avoiding if every non-leaf node has at least two branches. It is locally disjoint if no branch overlaps any other (unequal) branch of the same root.
EXAMPLE
The a(4) = 11 rooted trees:
4,
(13),
(22),
(1(12)), (2(11)), (112),
(1(1(11))), (1(111)), ((11)(11)), (11(11)), (1111).
MATHEMATICA
disjointQ[u_]:=Apply[And, Outer[#1==#2||Intersection[#1, #2]=={}&, u, u, 1], {0, 1}];
nms[n_]:=nms[n]=Prepend[Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]], disjointQ], {ptn, Rest[IntegerPartitions[n]]}], {n}];
Table[Length[nms[n]], {n, 10}]
CROSSREFS
Matula-Goebel numbers of locally disjoint rooted trees are A316495.
The case where all leaves are 1's is A316697.
Lone-child-avoiding locally disjoint rooted trees are A331680.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jul 10 2018
EXTENSIONS
a(16)-a(17) from Robert Price, Sep 16 2018
Terminology corrected by Gus Wiseman, Feb 06 2020
STATUS
approved
Number of balanced reduced multisystems whose atoms constitute a strongly normal multiset of size n.
+10
13
1, 1, 2, 9, 85, 1143, 25270
OFFSET
0,3
COMMENTS
A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.
EXAMPLE
The a(0) = 1 through a(3) = 9 multisystems:
{} {1} {1,1} {1,1,1}
{1,2} {1,1,2}
{1,2,3}
{{1},{1,1}}
{{1},{1,2}}
{{1},{2,3}}
{{2},{1,1}}
{{2},{1,3}}
{{3},{1,2}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];
totm[m_]:=Prepend[Join@@Table[totm[p], {p, Select[mps[m], 1<Length[#]<Length[m]&]}], m];
Table[Sum[Length[totm[m]], {m, strnorm[n]}], {n, 0, 5}]
CROSSREFS
The (weakly) normal version is A330655.
The maximum-depth case is A330675.
The case where the atoms are {1..n} is A005121.
The case where the atoms are all 1's is A318813.
The tree version is A330471.
Multiset partitions of strongly normal multisets are A035310.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 27 2019
STATUS
approved
Number of series-reduced labeled trees with n nodes.
+10
11
1, 0, 1, 1, 13, 51, 601, 4803, 63673, 775351, 12186061, 196158183, 3661759333, 72413918019, 1583407093633, 36916485570331, 929770285841137, 24904721121298671, 711342228666833173, 21502519995056598639, 687345492498807434461, 23135454269839313430715, 818568166383797223246601, 30357965273255025673685091
OFFSET
1,5
COMMENTS
"Series-reduced" means that if the tree is rooted at 1, then there is no node with just a single child.
Callan points out that A002792 is an incorrect version of this sequence. - Joerg Arndt, Jul 01 2014
LINKS
David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], 2014.
FORMULA
a(n) = A060356(n)/n.
1 = Sum_{n>=0} a(n+1)*(exp(x)-x)^(-n-1)*x^n/n!.
E.g.f.: A(x) = Sum_{n>=0} a(n+1)*x^n/n! satisfies A(x) = exp(x*A(x))/(1+x). - Olivier Gérard, Dec 31 2013 (edited by Gus Wiseman, Dec 31 2019)
E.g.f.: -Integral (LambertW(-x/(1 + x))/x) dx. - Ilya Gutkovskiy, Jul 01 2020
MATHEMATICA
f[n_] := Sum[(-1)^(n-k)*n!/k!*Binomial[n-1, k-1]*k^(k-1), {k, n}]/n; Table[ f[n], {n, 20}] (* Robert G. Wilson v, Jul 21 2005 *)
PROG
(PARI) a(n) = { 1/n * sum(k=1, n, (-1)^(n-k) * binomial(n, k) * (n-1)!/(k-1)! * k^(k-1) ); } \\ Joerg Arndt, Aug 28 2014
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jul 20 2005
EXTENSIONS
More terms from Robert G. Wilson v, Jul 21 2005
New name (from A002792) by Joerg Arndt, Aug 28 2014
Offset corrected by Gus Wiseman, Dec 31 2019
STATUS
approved

Search completed in 0.023 seconds