[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of series-reduced labeled trees with n nodes.
11

%I #36 Sep 25 2022 09:32:49

%S 1,0,1,1,13,51,601,4803,63673,775351,12186061,196158183,3661759333,

%T 72413918019,1583407093633,36916485570331,929770285841137,

%U 24904721121298671,711342228666833173,21502519995056598639,687345492498807434461,23135454269839313430715,818568166383797223246601,30357965273255025673685091

%N Number of series-reduced labeled trees with n nodes.

%C "Series-reduced" means that if the tree is rooted at 1, then there is no node with just a single child.

%C Callan points out that A002792 is an incorrect version of this sequence. - _Joerg Arndt_, Jul 01 2014

%H Seiichi Manyama, <a href="/A108919/b108919.txt">Table of n, a(n) for n = 1..415</a>

%H David Callan, <a href="http://arxiv.org/abs/1406.7784">A sign-reversing involution to count labeled lone-child-avoiding trees</a>, arXiv:1406.7784 [math.CO], 2014.

%F a(n) = A060356(n)/n.

%F 1 = Sum_{n>=0} a(n+1)*(exp(x)-x)^(-n-1)*x^n/n!.

%F E.g.f.: A(x) = Sum_{n>=0} a(n+1)*x^n/n! satisfies A(x) = exp(x*A(x))/(1+x). - _Olivier Gérard_, Dec 31 2013 (edited by _Gus Wiseman_, Dec 31 2019)

%F E.g.f.: -Integral (LambertW(-x/(1 + x))/x) dx. - _Ilya Gutkovskiy_, Jul 01 2020

%t f[n_] := Sum[(-1)^(n-k)*n!/k!*Binomial[n-1, k-1]*k^(k-1), {k, n}]/n; Table[ f[n], {n, 20}] (* _Robert G. Wilson v_, Jul 21 2005 *)

%o (PARI) a(n) = { 1/n * sum(k=1, n, (-1)^(n-k) * binomial(n,k) * (n-1)!/(k-1)! * k^(k-1) ); } \\ _Joerg Arndt_, Aug 28 2014

%Y The rooted version is A060356.

%Y Cf. A000311, A000669, A001678, A292504, A316651, A316652, A318231, A318813, A330465, A330624, A352410.

%K easy,nonn

%O 1,5

%A _Vladeta Jovovic_, Jul 20 2005

%E More terms from _Robert G. Wilson v_, Jul 21 2005

%E New name (from A002792) by _Joerg Arndt_, Aug 28 2014

%E Offset corrected by _Gus Wiseman_, Dec 31 2019