[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319369
Number of series-reduced rooted trees with n leaves of n colors.
4
1, 3, 28, 430, 9376, 269675, 9632960, 411395268, 20445999734, 1159248404721, 73846864163348, 5221802726902476, 405858598184643930, 34392275731729465799, 3155760058245300968416, 311720334688779807141832, 32980137195294216968253900, 3720954854814866649904474180
OFFSET
1,2
COMMENTS
Not all of the n colors need to be used.
LINKS
V. P. Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. Southern Calif., 2012.
FORMULA
a(n) ~ c * d^n * n^(n - 3/2), where d = 1/(2*log(2) - 1) = 2.588699449562089830805384431942090... and c = 0.2580000331300831455241033648... - Vaclav Kotesovec, Sep 18 2019, updated Mar 16 2024
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(A(i, k)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
end:
A:= (n, k)-> `if`(n<2, n*k, b(n, n-1, k)):
a:= n-> A(n$2):
seq(a(n), n=1..20); # Alois P. Heinz, Sep 18 2018
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[A[i, k] + j - 1, j]*b[n - i*j, i - 1, k], {j, 0, n/i}]]];
A[n_, k_] := If[n < 2, n*k, b[n, n - 1, k]];
a[n_] := A[n, n];
a /@ Range[1, 20] (* Jean-François Alcover, Sep 24 2019, after Alois P. Heinz *)
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
a(n)={my(v=[n]); for(n=2, n, v=concat(v, EulerT(concat(v, [0]))[n])); v[n]}
CROSSREFS
Main diagonal of A319254.
Cf. A000311 (1 leaf of each color), A316651.
Sequence in context: A143636 A219532 A376034 * A340789 A210854 A060545
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Sep 17 2018
STATUS
approved