[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317449
Regular triangle where T(n,k) is the number of multiset partitions of strongly normal multisets of size n into k blocks, where a multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities.
6
1, 2, 2, 3, 6, 3, 5, 21, 16, 5, 7, 52, 72, 32, 7, 11, 141, 306, 216, 65, 11, 15, 327, 1113, 1160, 512, 113, 15, 22, 791, 4033, 6052, 3737, 1154, 199, 22, 30, 1780, 13586, 28749, 24325, 10059, 2317, 323, 30, 42, 4058, 45514, 133642, 151994, 82994, 24854, 4493, 523, 42
OFFSET
1,2
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
EXAMPLE
The T(3,2) = 6 multiset partitions are {{1},{1,1}}, {{1},{1,2}}, {{2},{1,1}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}.
Triangle begins:
1
2 2
3 6 3
5 21 16 5
7 52 72 32 7
11 141 306 216 65 11
15 327 1113 1160 512 113 15
...
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];
Table[Length[Select[Join@@mps/@strnorm[n], Length[#]==k&]], {n, 6}, {k, n}]
PROG
(PARI)
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
D(p, n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=EulerT(v)); Vec(1/prod(k=1, n, 1 - u[k]*x^k + O(x*x^n))-1, -n)/prod(i=1, #v, i^v[i]*v[i]!)}
U(m, n)={my(s=0); forpart(p=m, s+=D(p, n)); s}
M(n)={Mat(vector(n, k, (U(k, n)-U(k-1, n))~))}
{ my(A=M(8)); for(n=1, #A~, print(A[n, 1..n])) } \\ Andrew Howroyd, Dec 30 2020
CROSSREFS
Row sums are A035310. First and last columns are both A000041.
Sequence in context: A196967 A210859 A209420 * A222310 A294033 A376168
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Aug 06 2018
EXTENSIONS
Terms a(46) and beyond from Andrew Howroyd, Dec 30 2020
STATUS
approved