[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330675
Number of balanced reduced multisystems of maximum depth whose atoms constitute a strongly normal multiset of size n.
10
1, 1, 2, 6, 43, 440, 7158, 151414
OFFSET
0,3
COMMENTS
A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.
EXAMPLE
The a(2) = 2 and a(3) = 6 multisystems:
{1,1} {{1},{1,1}}
{1,2} {{1},{1,2}}
{{1},{2,3}}
{{2},{1,1}}
{{2},{1,3}}
{{3},{1,2}}
The a(4) = 43 multisystems (commas and outer brackets elided):
{{1}}{{1}{11}} {{1}}{{1}{12}} {{1}}{{1}{22}} {{1}}{{1}{23}} {{1}}{{2}{34}}
{{11}}{{1}{1}} {{11}}{{1}{2}} {{11}}{{2}{2}} {{11}}{{2}{3}} {{12}}{{3}{4}}
{{1}}{{2}{11}} {{1}}{{2}{12}} {{1}}{{2}{13}} {{1}}{{3}{24}}
{{12}}{{1}{1}} {{12}}{{1}{2}} {{12}}{{1}{3}} {{13}}{{2}{4}}
{{2}}{{1}{11}} {{2}}{{1}{12}} {{1}}{{3}{12}} {{1}}{{4}{23}}
{{2}}{{2}{11}} {{13}}{{1}{2}} {{14}}{{2}{3}}
{{22}}{{1}{1}} {{2}}{{1}{13}} {{2}}{{1}{34}}
{{2}}{{3}{11}} {{2}}{{3}{14}}
{{23}}{{1}{1}} {{23}}{{1}{4}}
{{3}}{{1}{12}} {{2}}{{4}{13}}
{{3}}{{2}{11}} {{24}}{{1}{3}}
{{3}}{{1}{24}}
{{3}}{{2}{14}}
{{3}}{{4}{12}}
{{34}}{{1}{2}}
{{4}}{{1}{23}}
{{4}}{{2}{13}}
{{4}}{{3}{12}}
MATHEMATICA
strnorm[n_]:=Flatten[MapIndexed[Table[#2, {#1}]&, #]]&/@IntegerPartitions[n];
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p], {p, Select[mps[m], 1<Length[#]<Length[m]&]}], m];
Table[Sum[Length[Select[totm[m], Depth[#]==If[Length[m]<=1, 2, Length[m]]&]], {m, strnorm[n]}], {n, 0, 5}]
CROSSREFS
The case with all atoms equal is A000111.
The case with all atoms different is A006472.
The version allowing all depths is A330475.
The unlabeled version is A330663.
The version where the atoms are the prime indices of n is A330665.
The (weakly) normal version is A330676.
The version where the degrees are the prime indices of n is A330728.
Multiset partitions of strongly normal multisets are A035310.
Series-reduced rooted trees with strongly normal leaves are A316652.
Sequence in context: A023363 A091241 A198076 * A183313 A066863 A296828
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 30 2019
STATUS
approved