[go: up one dir, main page]

login
Search: a034953 -id:a034953
     Sort: relevance | references | number | modified | created      Format: long | short | data
Partial sums of A034953(n).
+20
2
3, 9, 24, 52, 118, 209, 362, 552, 828, 1263, 1759, 2462, 3323, 4269, 5397, 6828, 8598, 10489, 12767, 15323, 18024, 21184, 24670, 28675, 33428, 38579, 43935, 49713, 55708, 62149, 70277, 78923, 88376, 98106, 109281, 120757, 133160, 146526, 160554
OFFSET
1,1
EXAMPLE
a(3)=T(2)+T(3)+T(5)=3+6+15=24
MATHEMATICA
Accumulate[(#(#+1))/2&/@Prime[Range[50]]] (* Harvey P. Dale, Dec 01 2015 *)
PROG
(PARI) s=0; forprime(p=2, 300, s+=t(p); print1(s", "))
CROSSREFS
Cf. A034953.
KEYWORD
nonn
AUTHOR
Jon Perry, Jul 21 2003
EXTENSIONS
Corrected by T. D. Noe, Oct 25 2006
STATUS
approved
Numbers k such that 2k-1 is prime.
+10
85
2, 3, 4, 6, 7, 9, 10, 12, 15, 16, 19, 21, 22, 24, 27, 30, 31, 34, 36, 37, 40, 42, 45, 49, 51, 52, 54, 55, 57, 64, 66, 69, 70, 75, 76, 79, 82, 84, 87, 90, 91, 96, 97, 99, 100, 106, 112, 114, 115, 117, 120, 121, 126, 129, 132, 135, 136, 139, 141, 142, 147, 154, 156, 157
OFFSET
1,1
COMMENTS
a(n) is the inverse of 2 modulo prime(n) for n >= 2. - Jean-François Alcover, May 02 2017
The following sequences (allowing offset of first term) all appear to have the same parity: A034953, triangular numbers with prime indices; A054269, length of period of continued fraction for sqrt(p), p prime; A082749, difference between the sum of next prime(n) natural numbers and the sum of next n primes; A006254, numbers n such that 2n-1 is prime; A067076, 2n+3 is a prime. - Jeremy Gardiner, Sep 10 2004
Positions of prime numbers among odd numbers. - Zak Seidov, Mar 26 2013
Also, the integers remaining after removing every third integer following 2, and, recursively, removing every p-th integer following the next remaining entry (where p runs through the primes, beginning with 5). - Pete Klimek, Feb 10 2014
Also, numbers k such that k^2 = m^2 + p, for some integers m and every prime p > 2. Applicable m values are m = k - 1 (giving p = 2k - 1). Less obvious is: no solution exists if m equals any value in A047845, which is the complement of (A006254 - 1). - Richard R. Forberg, Apr 26 2014
If you define a different type of multiplication (*) where x (*) y = x * y + (x - 1) * (y - 1), (which has the commutative property) then this is the set of primes that follows. - Jason Atwood, Jun 16 2019
FORMULA
a(n) = (A000040(n+1) + 1)/2 = A067076(n-1) + 2 = A086801(n-1)/2 + 2.
a(n) = (1 + A065091(n))/2. - Omar E. Pol, Nov 10 2007
a(n) = sqrt((A065091^2 + 2*A065091+1)/4). - Eric Desbiaux, Jun 29 2009
a(n) = A111333(n+1). - Jonathan Sondow, Jan 20 2016
MATHEMATICA
Rest@Prime@Range@70/2 + 1/2 (* Robert G. Wilson v, Jun 16 2006 *)
Select[Range[200], PrimeQ[2#-1]&] (* Harvey P. Dale, Apr 06 2014 *)
PROG
(Magma) [n: n in [0..1000] | IsPrime(2*n-1)]; // Vincenzo Librandi, Nov 18 2010
(PARI) a(n)=prime(n+1)\2+1 \\ Charles R Greathouse IV, Mar 20 2013
(Python)
from sympy import prime
def A006254(n): return prime(n+1)+1>>1 # Chai Wah Wu, Aug 02 2024
CROSSREFS
Equals A005097 + 1. A130291 is an essentially identical sequence.
Cf. A065091.
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: this seq(k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Erich Friedman
More terms from Omar E. Pol, Nov 10 2007
STATUS
approved
Numbers k such that 2*k + 3 is a prime.
+10
65
0, 1, 2, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 22, 25, 28, 29, 32, 34, 35, 38, 40, 43, 47, 49, 50, 52, 53, 55, 62, 64, 67, 68, 73, 74, 77, 80, 82, 85, 88, 89, 94, 95, 97, 98, 104, 110, 112, 113, 115, 118, 119, 124, 127, 130, 133, 134, 137, 139, 140, 145, 152, 154, 155
OFFSET
1,3
COMMENTS
The following sequences (allowing offset of first term) all appear to have the same parity: A034953, triangular numbers with prime indices; A054269, length of period of continued fraction for sqrt(p), p prime; A082749, difference between the sum of next prime(n) natural numbers and the sum of next n primes; A006254, numbers n such that 2n-1 is prime; A067076, 2n+3 is a prime. - Jeremy Gardiner, Sep 10 2004
n is in the sequence iff none of the numbers (n-3k)/(2k+1), 1 <= k <= (n-1)/5, is positive integer. - Vladimir Shevelev, May 31 2009
Zeta(s) = Sum_{n>=1} 1/n^s = 1/1 - 2^(-s) * Product_{p=prime=(2*A067076)+3} 1/(1 - (2*A067076+3)^(-s)). - Eric Desbiaux, Dec 15 2009
This sequence is a subsequence of A047949. - Jason Kimberley, Aug 30 2012
LINKS
Mutsumi Suzuki, Vincenzo Librandi's method for sequential primes (Librandi's description in Italian).
FORMULA
a(n) = A006254(n) - 2 = A086801(n+1)/2. [Corrected by M. F. Hasler, Feb 14 2024]
a(n) = A089253(n) - 4. - Giovanni Teofilatto, Dec 14 2003
Conjecture: a(n) = A008507(n) + n - 1 = A005097(n) - 1 = A102781(n+1) - 1. - R. J. Mathar, Jul 07 2009
a(n) = A179893(n) - A000040(n). - Odimar Fabeny, Aug 24 2010
MAPLE
select(t -> isprime(2*t+3), [$0..1000]); # Robert Israel, Feb 19 2015
MATHEMATICA
(Prime[Range[100]+1]-3)/2 (* Vladimir Joseph Stephan Orlovsky, Sep 08 2008, modified by G. C. Greubel, May 21 2019 *)
Select[Range[0, 200], PrimeQ[2#+3]&] (* Harvey P. Dale, Jun 10 2014 *)
PROG
(PARI) [k | k<-[0..99], isprime(2*k+3)] \\ for illustration
(PARI) A067076(n) = (prime(n+1)-3)/2 \\ M. F. Hasler, Feb 14 2024
(Magma)[n: n in [0..200]| IsPrime(2*n+3)]; // Vincenzo Librandi, Feb 23 2012
(Sage) [n for n in (0..200) if is_prime(2*n+3) ] # G. C. Greubel, May 21 2019
(GAP) Filtered([0..200], k-> IsPrime(2*k+3) ) # G. C. Greubel, May 21 2019
CROSSREFS
Numbers n such that 2n+k is prime: A005097 (k=1), this seq(k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19). - Jason Kimberley, Sep 07 2012
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).
KEYWORD
nonn,easy
AUTHOR
David Williams, Aug 17 2002
EXTENSIONS
Offset changed from 0 to 1 in 2008: some formulas here and elsewhere may need to be corrected.
STATUS
approved
a(n) = p*(p-1)/2 for p = prime(n).
+10
30
1, 3, 10, 21, 55, 78, 136, 171, 253, 406, 465, 666, 820, 903, 1081, 1378, 1711, 1830, 2211, 2485, 2628, 3081, 3403, 3916, 4656, 5050, 5253, 5671, 5886, 6328, 8001, 8515, 9316, 9591, 11026, 11325, 12246, 13203, 13861, 14878, 15931, 16290, 18145, 18528, 19306
OFFSET
1,2
COMMENTS
Whereas A034953 is the sequence of triangular numbers with prime indices, this is the sequence of triangular numbers with numbers one less than primes for indices. - Alonso del Arte, Aug 17 2014
From Jianing Song, Apr 13 2019: (Start)
a(n) is both the number of quadratic residues and the number of nonresidues modulo prime(n)^2 that are coprime to prime(n).
For k coprime to prime(n), k^a(n) == +-1 (mod prime(n)^2). (End)
LINKS
FORMULA
a(n) = binomial(prime(n), 2) = A000217(A000040(n)). - Enrique Pérez Herrero, Dec 10 2011
a(n) = (1/2)*A072230(A000040(n)). - L. Edson Jeffery, Apr 07 2012
a(n) = (phi(prime(n))^2 + phi(prime(n)))/2, where phi(n) is Euler's totient function, A000010. - Alonso del Arte, Aug 22 2014
a(n) = A036689(n)/2. - Antti Karttunen, May 01 2015
Product_{n>=2} (1 - 1/a(n)) = A271780. - Amiram Eldar, Nov 22 2022
MAPLE
a:= n-> (p-> p*(p-1)/2)(ithprime(n)):
seq(a(n), n=1..65); # Alois P. Heinz, Apr 20 2022
MATHEMATICA
Table[Prime[n] * (Prime[n] - 1)/2, {n, 22}] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
Table[Binomial[Prime[n], 2], {n, 40}] (* Alonso del Arte, Aug 22 2014, based on the formula from Enrique Pérez Herrero *)
(#(#-1))/2&/@Prime[Range[50]] (* Harvey P. Dale, Oct 02 2019 *)
PROG
(Magma) [ (k-1)*k/2 where k is NthPrime(n): n in [1..44] ]; // Klaus Brockhaus, Nov 18 2008
(PARI) { n=0; forprime (p=2, prime(1000), write("b008837.txt", n++, " ", p*(p - 1)/2) ) } \\ Harry J. Smith, Jul 25 2009
(Scheme) (define (A008837 n) (/ (A036689 n) 2)) ;; Antti Karttunen, May 01 2015
CROSSREFS
Half the terms of A036689.
Cf. A000217 (triangular numbers), A112456 (least triangular number divisible by n-th prime). - Klaus Brockhaus, Nov 18 2008
Column 1 of A257253. (Row 1 of A257254).
KEYWORD
nonn,easy
EXTENSIONS
Offset changed from 2 to 1 by Harry J. Smith, Jul 25 2009
STATUS
approved
Length of period of continued fraction for sqrt(prime(n)).
+10
18
1, 2, 1, 4, 2, 5, 1, 6, 4, 5, 8, 1, 3, 10, 4, 5, 6, 11, 10, 8, 7, 4, 2, 5, 11, 1, 12, 6, 15, 9, 12, 6, 9, 18, 9, 20, 17, 18, 4, 5, 14, 21, 16, 13, 1, 20, 26, 4, 2, 5, 11, 12, 17, 14, 1, 12, 3, 24, 21, 13, 18, 5, 14, 16, 17, 11, 34, 19, 14, 7, 15, 4, 20, 5, 30, 8, 9, 21, 1, 21, 18, 37, 16
OFFSET
1,2
COMMENTS
The following sequences (allowing offset of first term) all appear to have the same parity: A034953, triangular numbers with prime indices; A054269, length of period of continued fraction for sqrt(p), p prime; A082749, difference between the sum of next prime(n) natural numbers and the sum of next n primes; A006254, numbers n such that 2n-1 is prime; A067076, 2n+3 is a prime. - Jeremy Gardiner, Sep 10 2004
Note that primes of the form n^2+1 (A002496) have a continued fraction whose period length is 1; odd primes of the form n^2+2 (A056899) have length 2; odd primes of the form n^2-2 (A028871) have length 4. - T. D. Noe, Nov 03 2006
For an odd prime p, the length of the period is odd if p=1 (mod 4) or even if p=3 (mod 4). - T. D. Noe, May 22 2007
MAPLE
with(numtheory): for i from 1 to 150 do cfr := cfrac(ithprime(i)^(1/2), 'periodic', 'quotients'); printf(`%d, `, nops(cfr[2])) od:
MATHEMATICA
Table[p=Prime[n]; Length[Last[ContinuedFraction[Sqrt[p]]]], {n, 100}] (* T. D. Noe, May 22 2007 *)
Length[ContinuedFraction[Sqrt[#]][[2]]]&/@Prime[Range[100]] (* Harvey P. Dale, Sep 28 2024 *)
CROSSREFS
Cf. A003285, A130272 (primes at which the period length sets a new record).
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, May 05 2000
EXTENSIONS
More terms from James A. Sellers, May 05 2000
STATUS
approved
Product of three numbers: n-th prime, previous number, and following number.
+10
15
6, 24, 120, 336, 1320, 2184, 4896, 6840, 12144, 24360, 29760, 50616, 68880, 79464, 103776, 148824, 205320, 226920, 300696, 357840, 388944, 492960, 571704, 704880, 912576, 1030200, 1092624, 1224936, 1294920, 1442784, 2048256, 2247960, 2571216, 2685480, 3307800
OFFSET
1,1
COMMENTS
a(n) is the order of the matrix group SL(2,prime(n)). - Tom Edgar, Sep 28 2015
LINKS
J. B. Marshall, On the extension of Fermat's theorem to matrices of order n, Proceedings of the Edinburgh Mathematical Society 6 (1939) 85-91. See (11) page 90-91 when p=2.
FORMULA
a(n) = prime(n)*(prime(n)^2-1). - Tom Edgar, Sep 28 2015
a(n) = 2 * A117762(n), for n > 1. - Altug Alkan, Sep 28 2015
From Amiram Eldar, Nov 22 2022: (Start)
Product_{n>=1} (1 + 1/a(n)) = A065487.
Product_{n>=1} (1 - 1/a(n)) = A065470. (End)
MATHEMATICA
Table[(Prime[n] + 1) Prime[n](Prime[n] - 1), {n, 1, 100}]
PROG
(PARI) forprime(p=2, 1e3, print1(6*binomial(p+1, 3)", ")) \\ Charles R Greathouse IV, Jun 16 2011
(PARI) a(n) = prime(n)*(prime(n)^2-1);
vector(40, n, a(n)) \\ Altug Alkan, Sep 28 2015
(Magma) [6] cat [NthPrime(n)*(NthPrime(n)^2-1): n in [2..40]]; // Vincenzo Librandi, Sep 29 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Feb 06 2007
STATUS
approved
Product of a prime and the following number.
+10
14
6, 12, 30, 56, 132, 182, 306, 380, 552, 870, 992, 1406, 1722, 1892, 2256, 2862, 3540, 3782, 4556, 5112, 5402, 6320, 6972, 8010, 9506, 10302, 10712, 11556, 11990, 12882, 16256, 17292, 18906, 19460, 22350, 22952, 24806, 26732, 28056, 30102
OFFSET
1,1
COMMENTS
The infinite sum over the reciprocals is given in A179119. - Wolfdieter Lang, Jul 10 2019
1/a(n) is the asymptotic density of numbers whose prime(n)-adic valuation is positive and even. - Amiram Eldar, Jan 23 2021
LINKS
FORMULA
a(n) = prime(n)*(prime(n)+1).
a(n) = A060800(n) - 1.
a(n) = 2*A034953(n). - Artur Jasinski, Feb 06 2007
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(2)/zeta(3) (A306633).
Product_{n>=1} (1 - 1/a(n)) = A065463. (End)
EXAMPLE
a(3)=30 because prime(3)=5 and prime(3)+1=6, hence 5*6 = 30.
MATHEMATICA
Table[(Prime[n] + 1) Prime[n], {n, 1, 100}] (* Artur Jasinski, Feb 06 2007 *)
PROG
(Magma)[p^2+p: p in PrimesUpTo(250)]; // Vincenzo Librandi, Dec 19 2010
(PARI) a(n)=my(p=prime(n)); p*(p+1) \\ Charles R Greathouse IV, Mar 27 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
a(n) = prime(n*(n+1)/2).
+10
10
2, 5, 13, 29, 47, 73, 107, 151, 197, 257, 317, 397, 467, 571, 659, 769, 883, 1019, 1151, 1291, 1453, 1607, 1783, 1987, 2153, 2371, 2593, 2791, 3037, 3307, 3541, 3797, 4073, 4357, 4657, 4973, 5303, 5641, 5939, 6301, 6679, 7019, 7477
OFFSET
1,1
COMMENTS
There are n distinct successive primes p (not appearing in the sequence) such that a(n) < p < a(n+1). - David James Sycamore, Jul 22 2018
LINKS
Eric Weisstein's World of Mathematics, Triangular Number.
FORMULA
a(n) is asymptotic to (n*(n+1)/2) * log(n*(n+1)/2) = (n*(n+1)/2) * (log(n)+log(n+1)-log(2)) ~ (n^2 + n)*(2 log n)/2 ~ (n^2 + n)*(log n). - Jonathan Vos Post, Mar 12 2006
a(n) = A000040(A000217(n)). - David James Sycamore, Sep 03 2024
MAPLE
seq(ithprime(n*(n+1)/2), n=1..50); # Muniru A Asiru, Jul 22 2018
MATHEMATICA
Prime[#]&/@Accumulate[Range[50]] (* Harvey P. Dale, Mar 23 2015 *)
PROG
(Magma) [NthPrime(n*(n+1) div 2): n in [1..100] ]; // Vincenzo Librandi, Apr 11 2011
(Haskell)
a011756 n = a011756_list !! (n-1)
a011756_list = map a000040 $ tail a000217_list
-- Reinhard Zumkeller, Sep 23 2011
(PARI) a(n) = prime(n*(n+1)/2); \\ Michel Marcus, Jul 22 2018
CROSSREFS
Primes in leading diagonal of triangle in A078721.
Cf. A195678.
Cf. A000720.
KEYWORD
nonn
AUTHOR
STATUS
approved
Half of product of three numbers: n-th prime, previous and following number.
+10
9
3, 12, 60, 168, 660, 1092, 2448, 3420, 6072, 12180, 14880, 25308, 34440, 39732, 51888, 74412, 102660, 113460, 150348, 178920, 194472, 246480, 285852, 352440, 456288, 515100, 546312, 612468, 647460, 721392, 1024128, 1123980, 1285608
OFFSET
1,1
COMMENTS
Apart from the first term, the same as A117762. - R. J. Mathar, Jun 14 2008
Except the first term, a(n) is the area of the integer-sided isosceles triangle ABC with AB=AC such that the altitude AH is of prime(n) length.
The couples (a(n), altitude) are (12,3), (60,5), (168,7), (660,11), (1092,13), ... and the sequence of the ratio a(n)/prime(n) is {4, 12, 24, 60, 84, 144, 180, ...} - see A084921. - Michel Lagneau, Oct 23 2013
a(n) is also equal to the number of reducible quadratic polynomials in the field of size prime(n). - James East, Apr 26 2024
LINKS
MATHEMATICA
Table[(Prime[n] + 1) Prime[n](Prime[n] - 1)/2, {n, 1, 100}]
PROG
(PARI) forprime(p=2, 1e3, print1(3*binomial(p+1, 3)", ")) \\ Charles R Greathouse IV, Jun 16 2011
(Magma) [(NthPrime(n)+1)*NthPrime(n)*(NthPrime(n)-1)/2: n in [1..40]]; // Vincenzo Librandi, Apr 09 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Feb 06 2007
STATUS
approved
1/3 of product of three numbers: the n-th prime, the previous number and the following number.
+10
9
2, 8, 40, 112, 440, 728, 1632, 2280, 4048, 8120, 9920, 16872, 22960, 26488, 34592, 49608, 68440, 75640, 100232, 119280, 129648, 164320, 190568, 234960, 304192, 343400, 364208, 408312, 431640, 480928, 682752, 749320, 857072, 895160, 1102600
OFFSET
1,1
COMMENTS
Number of irreducible monic cubic polynomials over GF(prime(n)). - Robert Israel, Jan 06 2015
LINKS
FORMULA
a(n) = (prime(n)^3 - prime(n))/3. - Wesley Ivan Hurt, Oct 15 2023
MAPLE
seq((ithprime(n)^3 - ithprime(n))/3, n=1..100); # Robert Israel, Jan 06 2015
MATHEMATICA
Table[(Prime[n] + 1) Prime[n] (Prime[n] - 1)/3, {n, 100}]
PROG
(PARI) forprime(p=2, 1e3, print1(2*binomial(p+1, 3)", ")) \\ Charles R Greathouse IV, Jun 16 2011
(Magma) [(p^3 - p) div 3: p in PrimesUpTo(150)]; // Vincenzo Librandi, Jan 08 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Feb 06 2007
STATUS
approved

Search completed in 0.023 seconds