[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a127919 -id:a127919
     Sort: relevance | references | number | modified | created      Format: long | short | data
1/6 of product of three numbers: n-th prime, previous and following number.
+10
7
1, 4, 20, 56, 220, 364, 816, 1140, 2024, 4060, 4960, 8436, 11480, 13244, 17296, 24804, 34220, 37820, 50116, 59640, 64824, 82160, 95284, 117480, 152096, 171700, 182104, 204156, 215820, 240464, 341376, 374660, 428536, 447580, 551300, 573800, 644956
OFFSET
1,2
LINKS
FORMULA
a(n) = A127918(n)/3. - Michel Marcus, Apr 09 2017
MATHEMATICA
Table[(Prime[n] + 1) Prime[n](Prime[n] - 1)/6, {n, 1, 100}]
((#-1)#(#+1))/6&/@Prime[Range[40]] (* Harvey P. Dale, Dec 23 2019 *)
PROG
(PARI) forprime(p=2, 1e3, print1(binomial(p+1, 3)", ")) \\ Charles R Greathouse IV, Jun 16 2011
(Python)
from sympy import prime
print([(prime(n) - 1)*prime(n)*(prime(n) + 1)//6 for n in range(1, 101)]) # Indranil Ghosh, Apr 09 2017
(Magma) [(NthPrime(n) + 1)*NthPrime(n)*(NthPrime(n) - 1)/6: n in [1..40]]; // Vincenzo Librandi, Apr 09 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Feb 06 2007
STATUS
approved
a(n) = ((prime(n))^5-prime(n))/5.
+10
6
6, 48, 624, 3360, 32208, 74256, 283968, 495216, 1287264, 4102224, 5725824, 13868784, 23171232, 29401680, 45868992, 83639088, 142984848, 168919248, 270025008, 360845856, 414614304, 615411264, 787808112, 1116811872
OFFSET
1,1
COMMENTS
Number of monic irreducible polynomials of degree 5 over GF(prime(n)). - Robert Israel, Jan 07 2015
LINKS
FORMULA
a(n) = A138404(n)/5. - R. J. Mathar, Oct 15 2017
MAPLE
seq((ithprime(i)^5-ithprime(i))/5, i = 1 .. 50); # Robert Israel, Jan 07 2015
MATHEMATICA
a = {}; Do[p = Prime[n]; AppendTo[a, (p^5 - p)/5], {n, 1, 50}]; a
(#^5-#)/5&/@Prime[Range[30]] (* Harvey P. Dale, Mar 12 2018 *)
PROG
(Magma) [(NthPrime((n))^5 - NthPrime((n)))/5: n in [1..30] ]; // Vincenzo Librandi, Jun 18 2011
(PARI) forprime(p=2, 1e3, print1((p^5-p)/5", ")) \\ Charles R Greathouse IV, Jul 15 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Mar 19 2008
STATUS
approved
1/24 of product of three numbers: n-th prime, previous and following number.
+10
5
1, 5, 14, 55, 91, 204, 285, 506, 1015, 1240, 2109, 2870, 3311, 4324, 6201, 8555, 9455, 12529, 14910, 16206, 20540, 23821, 29370, 38024, 42925, 45526, 51039, 53955, 60116, 85344, 93665, 107134, 111895, 137825, 143450, 161239, 180441, 194054
OFFSET
2,2
COMMENTS
The product of (n-1), n, and (n+1) = n^3 - n. - Harvey P. Dale, Jan 17 2011
For n > 2, a(n) = A001318(n-2) * A007310(n-1), if A007310(n-1) is prime. Also a(n) is a subsequence of A000330. - Richard R. Forberg, Dec 25 2013
If p is an odd prime it can always be the side length of a leg of a primitive Pythagorean triangle. However it constrains the other leg to have a side length of (p^2-1)/2 and the hypotenuse to have a side length of (p^2+1)/2. The resulting triangle has an area equal to (p-1)*p*(p+1)/4. a(n) is 1/6 the area of such triangles. - Frank M Jackson, Dec 06 2017
LINKS
César Aguilera, Two Prime Number Objects and The Velucchi Numbers, hal-02909691 [math.NT], 2020.
FORMULA
a(n) = A011842(A000040(n) + 1) = A000330((A000040(n) - 1) / 2).
MATHEMATICA
Table[(Prime[n] + 1) Prime[n](Prime[n] - 1)/24, {n, 1, 100}] (#^3-#)/ 24&/@ Prime[Range[2, 40]] (* Harvey P. Dale, Jan 17 2011 *)
((#-1)#(#+1))/24&/@Prime[Range[2, 40]] (* Harvey P. Dale, Jan 20 2023 *)
PROG
(PARI) for(n=2, 25, print1((prime(n)+1)*prime(n)*(prime(n)-1)/24, ", ")) \\ G. C. Greubel, Jun 19 2017
KEYWORD
nonn
AUTHOR
Artur Jasinski, Feb 06 2007
STATUS
approved
a(n) = ((prime(n))^4-(prime(n))^2)/4.
+10
5
3, 18, 150, 588, 3630, 7098, 20808, 32490, 69828, 176610, 230640, 468198, 706020, 854238, 1219368, 1971918, 3028470, 3460530, 5036658, 6351660, 7098228, 9735960, 11862858, 15683580, 22129968, 26012550, 28135068, 32767038, 35286570
OFFSET
1,1
COMMENTS
Number of monic irreducible polynomials of degree 4 over GF(prime(n)). - Robert Israel, Jan 07 2015
LINKS
FORMULA
a(n) = A138402(n)/4. - R. J. Mathar, Oct 15 2017
MAPLE
seq(1/4*(ithprime(i)^4 - ithprime(i)^2), i=1..100); # Robert Israel, Jan 07 2015
MATHEMATICA
a = {}; Do[p = Prime[n]; AppendTo[a, (p^4 - p^2)/4], {n, 1, 50}]; a
PROG
(Magma) [(NthPrime((n))^4 - NthPrime((n))^2)/4: n in [1..30] ]; // Vincenzo Librandi, Jun 17 2011
(PARI) forprime(p=2, 1e3, print1((p^4-p^2)/4", ")) \\ Charles R Greathouse IV, Jul 15 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Mar 19 2008
EXTENSIONS
Name edited by Robert Israel, Jan 07 2015
STATUS
approved
a(n) = (p^3 - p^2)/2, where p = prime(n).
+10
3
2, 9, 50, 147, 605, 1014, 2312, 3249, 5819, 11774, 14415, 24642, 33620, 38829, 50807, 73034, 100949, 111630, 148137, 176435, 191844, 243399, 282449, 348524, 451632, 510050, 541059, 606797, 641574, 715064, 1016127, 1115465, 1276292, 1333149
OFFSET
1,1
COMMENTS
Differences (p^k - p^m)/q with k > m:
.
expression OEIS sequence
-------------- -------------
p^2 - p A036689
(p^2 - p)/2 A008837
p^3 - p A127917
(p^3 - p)/2 A127918
(p^3 - p)/3 A127919
(p^3 - p)/6 A127920
p^3 - p^2 A135177
(p^3 - p^2)/2 this sequence
p^4 - p A138401
(p^4 - p)/2 A138417
p^4 - p^2 A138402
(p^4 - p^2)/2 A138418
(p^4 - p^2)/3 A138419
(p^4 - p^2)/4 A138420
(p^4 - p^2)/6 A138421
(p^4 - p^2)/12 A138422
p^4 - p^3 A138403
(p^4 - p^3)/2 A138423
p^5 - p A138404
(p^5 - p)/2 A138424
(p^5 - p)/3 A138425
(p^5 - p)/5 A138426
(p^5 - p)/6 A138427
(p^5 - p)/10 A138428
(p^5 - p)/15 A138429
(p^5 - p)/30 A138430
p^5 - p^2 A138405
(p^5 - p^2)/2 A138431
p^5 - p^3 A138406
(p^5 - p^3)/2 A138432
(p^5 - p^3)/3 A138433
(p^5 - p^3)/4 A138434
(p^5 - p^3)/6 A138435
(p^5 - p^3)/8 A138436
(p^5 - p^3)/12 A138437
(p^5 - p^3)/24 A138438
p^5 - p^4 A138407
(p^5 - p^4)/2 A138439
p^6 - p A138408
(p^6 - p)/2 A138440
p^6 - p^2 A138409
(p^6 - p^2)/2 A138441
(p^6 - p^2)/3 A138442
(p^6 - p^2)/4 A138443
(p^6 - p^2)/5 A138444
(p^6 - p^2)/6 A138445
(p^6 - p^2)/10 A138446
(p^6 - p^2)/12 A138447
(p^6 - p^2)/15 A138448
(p^6 - p^2)/20 A122220
(p^6 - p^2)/30 A138450
(p^6 - p^2)/60 A138451
p^6 - p^3 A138410
(p^6 - p^3)/2 A138452
p^6 - p^4 A138411
(p^6 - p^4)/2 A138453
(p^6 - p^4)/3 A138454
(p^6 - p^4)/4 A138455
(p^6 - p^4)/6 A138456
(p^6 - p^4)/8 A138457
(p^6 - p^4)/12 A138458
(p^6 - p^4)/24 A138459
p^6 - p^5 A138412
(p^6 - p^5)/2 A138460
LINKS
MATHEMATICA
a = {}; Do[p = Prime[n]; AppendTo[a, (p^3 - p^2)/2], {n, 1, 50}]; a
(#^3-#^2)/2&/@Prime[Range[50]] (* Harvey P. Dale, Nov 01 2020 *)
PROG
(PARI) forprime(p=2, 1e3, print1((p^3-p^2)/2", ")) \\ Charles R Greathouse IV, Jun 16 2011
(Magma)[(p^3-p^2)/2: p in PrimesUpTo(1000)]; // Vincenzo Librandi, Jun 17 2011
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Mar 19 2008
EXTENSIONS
Definition corrected by T. D. Noe, Aug 25 2008
STATUS
approved
1/12 of product of three numbers: n-th prime, previous and following number.
+10
2
2, 10, 28, 110, 182, 408, 570, 1012, 2030, 2480, 4218, 5740, 6622, 8648, 12402, 17110, 18910, 25058, 29820, 32412, 41080, 47642, 58740, 76048, 85850, 91052, 102078, 107910, 120232, 170688, 187330, 214268, 223790, 275650, 286900, 322478, 360882, 388108, 431462
OFFSET
2,1
COMMENTS
Summation of products of partitions into two parts of prime(n): a(6) = (1*12) + (2*11) + (3*10) + (4*9) + (5*8) + (6*7) = 182. - César Aguilera, Feb 20 2018
LINKS
FORMULA
a(n) ~ (n log n)^3/12. - Charles R Greathouse IV, Feb 28 2018
MAPLE
a:= n-> (p->p*(p^2-1)/12)(ithprime(n)):
seq(a(n), n=2..40); # Alois P. Heinz, Mar 08 2022
MATHEMATICA
Table[(Prime[n] + 1) Prime[n](Prime[n] - 1)/12, {n, 2, 100}]
((#-1)#(#+1))/12&/@Prime[Range[2, 40]] (* Harvey P. Dale, Mar 08 2022 *)
PROG
(PARI) a(n, p=prime(n))=binomial(p+1, 3)/2 \\ Charles R Greathouse IV, Feb 28 2018
(Magma) [(NthPrime(n) + 1)*NthPrime(n)*(NthPrime(n) - 1)/12: n in [2..50]]; // G. C. Greubel, Apr 30 2018
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Feb 06 2007
STATUS
approved
a(n) = ((n-th prime)^6-(n-th prime)^4)/12.
+10
2
4, 54, 1250, 9604, 146410, 399854, 2004504, 3909630, 12313004, 49509670, 73881680, 213654354, 395606540, 526495354, 897861304, 1846372554, 3514034690, 4292210710, 7536519254, 10672906020, 12608819004, 20254042120, 27241076254
OFFSET
1,1
COMMENTS
Differences (p^k-p^m)/q such that k > m:
p^2-p is given in A036689
(p^2-p)/2 is given in A008837
p^3-p is given in A127917
(p^3-p)/2 is given in A127918
(p^3-p)/3 is given in A127919
(p^3-p)/6 is given in A127920
p^3-p^2 is given in A135177
(p^3-p^2)/2 is given in A138416
p^4-p is given in A138401
(p^4-p)/2 is given in A138417
p^4-p^2 is given in A138402
(p^4-p^2)/2 is given in A138418
(p^4-p^2)/3 is given in A138419
(p^4-p^2)/4 is given in A138420
(p^4-p^2)/6 is given in A138421
(p^4-p^2)/12 is given in A138422
p^4-p^3 is given in A138403
(p^4-p^3)/2 is given in A138423
p^5-p is given in A138404
(p^5-p)/2 is given in A138424
(p^5-p)/3 is given in A138425
(p^5-p)/5 is given in A138426
(p^5-p)/6 is given in A138427
(p^5-p)/10 is given in A138428
(p^5-p)/15 is given in A138429
(p^5-p)/30 is given in A138430
p^5-p^2 is given in A138405
(p^5-p^2)/2 is given in A138431
p^5-p^3 is given in A138406
(p^5-p^3)/2 is given in A138432
(p^5-p^3)/3 is given in A138433
(p^5-p^3)/4 is given in A138434
(p^5-p^3)/6 is given in A138435
(p^5-p^3)/8 is given in A138436
(p^5-p^3)/12 is given in A138437
(p^5-p^3)/24 is given in A138438
p^5-p^4 is given in A138407
(p^5-p^4)/2 is given in A138439
p^6-p is given in A138408
(p^6-p)/2 is given in A138440
p^6-p^2 is given in A138409
(p^6-p^2)/2 is given in A138441
(p^6-p^2)/3 is given in A138442
(p^6-p^2)/4 is given in A138443
(p^6-p^2)/5 is given in A138444
(p^6-p^2)/6 is given in A138445
(p^6-p^2)/10 is given in A138446
(p^6-p^2)/12 is given in A138447
(p^6-p^2)/15 is given in A138448
(p^6-p^2)/20 is given in A122220
(p^6-p^2)/30 is given in A138450
(p^6-p^2)/60 is given in A138451
p^6-p^3 is given in A138410
(p^6-p^3)/2 is given in A138452
p^6-p^4 is given in A138411
(p^6-p^4)/2 is given in A138453
(p^6-p^4)/3 is given in A138454
(p^6-p^4)/4 is given in A138455
(p^6-p^4)/6 is given in A138456
(p^6-p^4)/8 is given in A138457
(p^6-p^4)/12 is given in A138458
(p^6-p^4)/24 is given in A138459
p^6-p^5 is given in A138412
(p^6-p^5)/2 is given in A138460
MATHEMATICA
a = {}; Do[p = Prime[n]; AppendTo[a, (p^6 - p^4)/12], {n, 1, 24}]; a
PROG
(PARI) forprime(p=2, 1e3, print1((p^6-p^4)/12", ")) \\ Charles R Greathouse IV, Jul 15 2011
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Mar 22 2008
STATUS
approved
Number of monic irreducible polynomials of degree 6 over GF(prime(n)).
+10
1
9, 116, 2580, 19544, 295020, 804076, 4022064, 7839780, 24670536, 99133020, 147912160, 427612404, 791672280, 1053546956, 1796518224, 3694034916, 7030054140, 8586690620, 15076346164, 21349986840, 25222305336, 40514492720, 54489965796, 82830096360, 138828513824, 176919851700
OFFSET
1,1
LINKS
FORMULA
a(n) = (p^6 - p^3 - p^2 + p)/6, where p = prime(n).
EXAMPLE
For n=1 the a(1) = 9 irreducible monic polynomials of degree 6 over GF(2) are
x^6+x^5+1, x^6+x^3+1, x^6+x^5+x^4+x^2+1, x^6+x^5+x^3+x^2+1, x^6+x+1, x^6+x^5+x^4+x+1, x^6+x^4+x^3+x+1, x^6+x^5+x^2+x+1, x^6+x^4+x^2+x+1.
MAPLE
f:= p-> (p^6 - p^3 - p^2 + p)/6:
seq(f(ithprime(i)), i=1..100); # Robert Israel, Jan 07 2015
MATHEMATICA
Table[(Prime[n]^6 - Prime[n]^3 - Prime[n]^2 + Prime[n]) / 6, {n, 1, 30}] (* Vincenzo Librandi, Jan 08 2015 *)
PROG
(Magma) [(p^6 - p^3 - p^2 + p) div 6: p in PrimesUpTo(110)]; // Vincenzo Librandi, Jan 08 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel, Jan 07 2015
STATUS
approved

Search completed in 0.007 seconds