Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Sep 08 2022 08:44:52
%S 6,12,30,56,132,182,306,380,552,870,992,1406,1722,1892,2256,2862,3540,
%T 3782,4556,5112,5402,6320,6972,8010,9506,10302,10712,11556,11990,
%U 12882,16256,17292,18906,19460,22350,22952,24806,26732,28056,30102
%N Product of a prime and the following number.
%C The infinite sum over the reciprocals is given in A179119. - _Wolfdieter Lang_, Jul 10 2019
%C 1/a(n) is the asymptotic density of numbers whose prime(n)-adic valuation is positive and even. - _Amiram Eldar_, Jan 23 2021
%H Vincenzo Librandi, <a href="/A036690/b036690.txt">Table of n, a(n) for n = 1..1000</a>
%F a(n) = prime(n)*(prime(n)+1).
%F a(n) = A060800(n) - 1.
%F a(n) = 2*A034953(n). - _Artur Jasinski_, Feb 06 2007
%F From _Amiram Eldar_, Jan 23 2021: (Start)
%F Product_{n>=1} (1 + 1/a(n)) = zeta(2)/zeta(3) (A306633).
%F Product_{n>=1} (1 - 1/a(n)) = A065463. (End)
%e a(3)=30 because prime(3)=5 and prime(3)+1=6, hence 5*6 = 30.
%t Table[(Prime[n] + 1) Prime[n], {n, 1, 100}] (* _Artur Jasinski_, Feb 06 2007 *)
%o (Magma)[p^2+p: p in PrimesUpTo(250)]; // _Vincenzo Librandi_, Dec 19 2010
%o (PARI) a(n)=my(p=prime(n)); p*(p+1) \\ _Charles R Greathouse IV_, Mar 27 2020
%Y Cf. A036689, A034953, A065463, A179119, A306633.
%K nonn,easy
%O 1,1
%A _Felice Russo_