[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = p*(p-1)/2 for p = prime(n).
30

%I #61 Nov 22 2022 02:35:37

%S 1,3,10,21,55,78,136,171,253,406,465,666,820,903,1081,1378,1711,1830,

%T 2211,2485,2628,3081,3403,3916,4656,5050,5253,5671,5886,6328,8001,

%U 8515,9316,9591,11026,11325,12246,13203,13861,14878,15931,16290,18145,18528,19306

%N a(n) = p*(p-1)/2 for p = prime(n).

%C Whereas A034953 is the sequence of triangular numbers with prime indices, this is the sequence of triangular numbers with numbers one less than primes for indices. - _Alonso del Arte_, Aug 17 2014

%C From _Jianing Song_, Apr 13 2019: (Start)

%C a(n) is both the number of quadratic residues and the number of nonresidues modulo prime(n)^2 that are coprime to prime(n).

%C For k coprime to prime(n), k^a(n) == +-1 (mod prime(n)^2). (End)

%H Harry J. Smith, <a href="/A008837/b008837.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = binomial(prime(n), 2) = A000217(A000040(n)). - _Enrique Pérez Herrero_, Dec 10 2011

%F a(n) = (1/2)*A072230(A000040(n)). - _L. Edson Jeffery_, Apr 07 2012

%F a(n) = (phi(prime(n))^2 + phi(prime(n)))/2, where phi(n) is Euler's totient function, A000010. - _Alonso del Arte_, Aug 22 2014

%F a(n) = A036689(n)/2. - _Antti Karttunen_, May 01 2015

%F Product_{n>=2} (1 - 1/a(n)) = A271780. - _Amiram Eldar_, Nov 22 2022

%p a:= n-> (p-> p*(p-1)/2)(ithprime(n)):

%p seq(a(n), n=1..65); # _Alois P. Heinz_, Apr 20 2022

%t Table[Prime[n] * (Prime[n] - 1)/2, {n, 22}] (* _Vladimir Joseph Stephan Orlovsky_, Apr 29 2008 *)

%t Table[Binomial[Prime[n], 2], {n, 40}] (* _Alonso del Arte_, Aug 22 2014, based on the formula from _Enrique Pérez Herrero_ *)

%t (#(#-1))/2&/@Prime[Range[50]] (* _Harvey P. Dale_, Oct 02 2019 *)

%o (Magma) [ (k-1)*k/2 where k is NthPrime(n): n in [1..44] ]; // _Klaus Brockhaus_, Nov 18 2008

%o (PARI) { n=0; forprime (p=2, prime(1000), write("b008837.txt", n++, " ", p*(p - 1)/2) ) } \\ _Harry J. Smith_, Jul 25 2009

%o (Scheme) (define (A008837 n) (/ (A036689 n) 2)) ;; _Antti Karttunen_, May 01 2015

%Y Half the terms of A036689.

%Y Cf. A000217 (triangular numbers), A112456 (least triangular number divisible by n-th prime). - _Klaus Brockhaus_, Nov 18 2008

%Y Cf. A000010, A000040, A072230, A034953, A271780.

%Y Column 1 of A257253. (Row 1 of A257254).

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_, _Ken Levasseur_

%E Offset changed from 2 to 1 by _Harry J. Smith_, Jul 25 2009