[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a034953 -id:a034953
     Sort: relevance | references | number | modified | created      Format: long | short | data
Primes p such that 29*p + 14 and 41*p + 20 are also prime.
+10
3
61, 103, 127, 271, 313, 331, 373, 457, 547, 571, 577, 613, 877, 967, 997, 1201, 1423, 1597, 2251, 2287, 2311, 2713, 2791, 2887, 3307, 3433, 3511, 3697, 3733, 3847, 4261, 4327, 4363, 4483, 4861, 4951, 5023, 5407, 5563, 5743, 6553, 6571, 6781, 6991, 7177, 7333
OFFSET
1,1
COMMENTS
p*(p + 1)/2 is the first number in a set of three triangular numbers with prime indices in arithmetic progression with difference 420*p*(p + 1) + 105. - Arkadiusz Wesolowski, Oct 29 2013
REFERENCES
Wacław Sierpiński, 200 zadan z elementarnej teorii liczb, Warsaw: PZWS, 1964, pp. 12, 61.
Wacław Sierpiński, 250 Problems in Elementary Number Theory. (Modern Analytic and Computational Methods in Science and Mathematics, No. 26), American Elsevier Publishing Co., Inc., New York; PWN Polish Scientific Publishers, Warsaw, 1970, pp. 7, 50.
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..10000
MATHEMATICA
lst = {}; Do[p = Prime[n]; If[PrimeQ[29*p + 14] && PrimeQ[41*p + 20], AppendTo[lst, p]], {n, 10^3}]; lst
Select[Prime[Range[1000]], AllTrue[{29#+14, 41#+20}, PrimeQ]&] (* Harvey P. Dale, Oct 05 2022 *)
PROG
(Magma) [p : p in PrimesUpTo(7333) | IsPrime(29*p+14) and IsPrime(41*p+20)]; // Arkadiusz Wesolowski, Oct 29 2013
CROSSREFS
Cf. A034953.
KEYWORD
nonn
AUTHOR
STATUS
approved
Sum of composite numbers less than n-th prime.
+10
2
0, 0, 4, 10, 37, 49, 94, 112, 175, 305, 335, 505, 622, 664, 799, 1049, 1329, 1389, 1709, 1916, 1988, 2368, 2611, 3041, 3692, 3989, 4091, 4406, 4514, 4847, 6407, 6794, 7464, 7602, 8898, 9048, 9818, 10618, 11113, 11963, 12843, 13023, 14697, 14889, 15474
OFFSET
1,3
FORMULA
a(n) = prime(n)*(prime(n)+1)/2 - sum_{1..n} prime(k) - 1.
Asymptotic expression: a(n) ~ n^2 * log(n)^2 / 2.
EXAMPLE
Prime(6) = 13, so a(6) = 4 + 6 + 8 + 9 + 1 0 + 12 = 49 = 13*14/2 - 13 - 11 - 7 - 5 - 3 - 2 - 1.
MAPLE
with(numtheory): A079725 := proc(n) local i:
RETURN(ithprime(n)*(ithprime(n)+1)/2 add(ithprime(i), i=1..n)-1):
end;
MATHEMATICA
a[n_] := Block[{p = Prime[n], k}, k = p(p + 1)/2 - 1 - Sum[Prime[i], {i, 1, n}]]; Table[ a[n], {n, 1, 45}]
CROSSREFS
Equals A000217(Prime_n) - A007504(n) - 1 = A034953 - A007504 - A000012.
Partial sums of A054265.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 18 2003
EXTENSIONS
Edited and extended by Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Robert G. Wilson v and T. D. Noe, Feb 18 2003
STATUS
approved
Prime numbers that are 2 less than a prime-indexed odd triangular number or 1 more than a prime-indexed even triangular number.
+10
2
7, 13, 29, 67, 89, 151, 191, 277, 433, 701, 859, 947, 1129, 1429, 1889, 2557, 2699, 4003, 4751, 5779, 8647, 11173, 12401, 13367, 14029, 16111, 18719, 19501, 22367, 24977, 27259, 31627, 33151, 36313, 36857, 38501, 39619, 47279, 49139, 56951
OFFSET
1,1
REFERENCES
David Wells, The Penguin Dictionary of Curious & Interesting Numbers. In the entry for 496 he remarks that 496 is the smallest counterexample to the conjecture that an even, prime-indexed triangular plus 1 equals a prime, since 497 is not prime.
LINKS
FORMULA
Given the numbers of A034953, triangular numbers with prime indices, subtract 2 from the odd numbers on the list and add 1 to the even numbers on the list, then remove from the list the composite numbers.
EXAMPLE
a(2) = 13 because 15 is the 5th triangular number and since it is odd and we take 2 away from it, it yields the prime 13.
a(3) = 29 because 28 is the 7th triangular number and since it is even and we add 1 to it, it yields the prime 29.
497 is not on the list because although 496 is the 31st triangular number, but 496 + 1 = 7 * 71.
That sequence continues: 1771, 2279, 3161, 3487, 5149, 5357, 5993, 6439, 8129, 9451, 9731, ....
MATHEMATICA
tri[n_] := n(n + 1)/2; tp = Table[ tri[ Prime[n]], {n, 2, 70}]; f[n_] := If[ OddQ[n], n - 2, n + 1]; Select[f /@ tp, PrimeQ[ # ] &] (* Robert G. Wilson v, Aug 12 2004 *)
Select[If[OddQ[#], #-2, #+1]&/@Table[(n(n+1))/2, {n, Prime[Range[ 100]]}], PrimeQ] (* Harvey P. Dale, Sep 19 2016 *)
CROSSREFS
Cf. A034953.
KEYWORD
nonn
AUTHOR
Alonso del Arte, Aug 02 2004
EXTENSIONS
Edited and extended by Robert G. Wilson v, Aug 12 2004
STATUS
approved
Parity of p*(p+1)/2 for n-th prime p.
+10
2
1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0
OFFSET
1,1
COMMENTS
The following sequences (possibly with a different offset for first term) all appear to have the same parity: A034953 = triangular numbers with prime indices; A054269 = length of period of continued fraction for sqrt(p), p prime; A082749 = difference between the sum of the next prime(n) natural numbers and the sum of the next n primes; A006254 = numbers n such that 2n-1 is prime; A067076 = numbers n such that 2n+3 is a prime.
Analogous to the prime race (mod 3). - Robert G. Wilson v, Sep 17 2004
See also A089253 = 2n-5 is a prime.
For n > 1, if A000040(n) == 1 (mod 4), then a(n) = 1, otherwise a(n)=0, so (for n>1) also a(n) = number of representations of A000040(n) as a difference of hexagonal numbers (A000384) (cf. [Nyblom, p. 262]). - L. Edson Jeffery, Feb 16 2013
LINKS
FORMULA
a(n) = parity of p*(p+1)/2 for n-th prime p.
a(n) = 1 - A100672(n), n > 1. - Steven G. Johnson (stevenj(AT)math.mit.edu), Sep 18 2008
For n > 1, a(n) = (prime(n) mod 4) mod 3. - Gary Detlefs, Oct 27 2011
EXAMPLE
a(1) = parity of (2*(2+1)/2 = 3) = 1 (odd).
MAPLE
seq((ithprime(n) mod 4) mod 3, n = 2..105] # Gary Detlefs, Oct 27 2011
MATHEMATICA
Table[ Mod[ Prime[n](Prime[n] + 1)/2, 2], {n, 105}] (* Robert G. Wilson v, Sep 17 2004 *)
Mod[(#(#+1))/2, 2]&/@Prime[Range[110]] (* Harvey P. Dale, Mar 29 2015 *)
PROG
(PARI) a(n)=prime(n)%4<3 \\ Charles R Greathouse IV, Oct 27 2011
KEYWORD
easy,nonn
AUTHOR
Jeremy Gardiner, Sep 10 2004
EXTENSIONS
More terms from Robert G. Wilson v, Sep 17 2004
STATUS
approved
Prime partial sums of triangular numbers with prime indices.
+10
2
3, 1759, 3323, 469303, 605113, 641969, 1110587, 1426669, 11148289, 18352349, 20473721, 21820391, 24710753, 30048589, 36690923, 40785301, 97060681, 155135369, 160593239, 168132247, 361391623, 377965069, 416572171, 645803201
OFFSET
1,1
LINKS
FORMULA
A000040 INTERSECTION {A085739 Partial sums of A034953(n)}. Primes in A085739. (Sum_{i=1..k} A000217(A000040(i))) iff in A000040. (Sum_{i=1..k} (A000040(i)*(A000040(i)+1)/2) iff in A000040.
EXAMPLE
a(1) = Sum_{i=1..1} prime(i)*(prime(i)+1)/2 = T(2) = 3.
a(2) = Sum_{i=1..11} prime(i)*(prime(i)+1)/2 = T(2)+T(3)+T(5)+T(7)+T(11)+T(13)+T(17)+T(19)+T(23)+T(29)+T(31) = 1759.
a(3) = Sum_{i=1..13} prime(i)*(prime(i)+1)/2 = 3323.
a(4) = Sum_{i=1..53} prime(i)*(prime(i)+1)/2 = T(2) + ... + T(241) = 469303.
a(5) = Sum_{i=1..57} prime(i)*(prime(i)+1)/2 = T(2) + ... + T(269) = 605113.
a(6) = Sum_{i=1..58} prime(i)*(prime(i)+1)/2 = T(2) + ... + T(271) = 641969.
a(7) = Sum_{i=1..68} prime(i)*(prime(i)+1)/2 = T(2) + ... + T(337) = 1110587.
MAPLE
T:=n->n*(n+1)/2: a:=proc(n): if isprime(sum(T(ithprime(j)), j=1..n))=true then sum(T(ithprime(j)), j=1..n) else fi end: seq(a(n), n=1..500); # Emeric Deutsch, Apr 06 2006
MATHEMATICA
Select[Accumulate[Table[(n(n+1))/2, {n, Prime[Range[500]]}]], PrimeQ] (* Harvey P. Dale, Jan 25 2015 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Apr 02 2006
EXTENSIONS
More terms from Emeric Deutsch, Apr 06 2006
STATUS
approved
Partial sums of hexagonal numbers with prime indices.
+10
2
6, 21, 66, 157, 388, 713, 1274, 1977, 3012, 4665, 6556, 9257, 12578, 16233, 20604, 26169, 33072, 40453, 49364, 59375, 69960, 82363, 96058, 111811, 130532, 150833, 171948, 194739, 218392, 243817, 275948, 310139, 347540, 386043, 430296, 475747
OFFSET
1,1
COMMENTS
There are no prime hexagonal numbers. The n-th hexagonal number A000384(n) = n*(2*n-1) is semiprime iff both n and 2*n-1 are prime iff A000384(n) is an element of A001358 iff n is an element of A005382.
LINKS
FORMULA
a(n) = SUM[i=1..n] A117961(i). a(n) = SUM[i=1..n] A000040(i)*(2*A000040(i)-1). a(n) = SUM[i=1..n] A000384(prime(n)). a(n) = Partial sum of number of divisors of 12^(prime(n)-1) = SUM[i=1..n] A000005(A001021(A000040(n)-1)).
EXAMPLE
a(4) = hexagonal(2) + hexagonal(3) + hexagonal(5) + hexagonal(7) = 6 + 15 + 45 + 91 = 157 is prime.
a(12) = 6 + 15 + 45 + 91 + 231 + 325 + 561 + 703 + 1035 + 1653 + 1891 + 2701 = 9257 is prime.
a(26) = 150833 is prime.
MATHEMATICA
Accumulate[Table[n(2n-1), {n, Prime[Range[50]]}]] (* Harvey P. Dale, Jan 30 2014 *)
CROSSREFS
See also: A034953 Triangular numbers (A000217) with prime indices. A001248 Squares of primes. A116995 Pentagonal numbers with prime indices. A000384 Hexagonal numbers: n(2n-1). A117961 Hexagonal numbers with prime indices. A117965 Prime partial sums of hexagonal numbers with prime indices.
KEYWORD
easy,nonn,less
AUTHOR
Jonathan Vos Post, Apr 05 2006
STATUS
approved
1/12 of product of three numbers: n-th prime, previous and following number.
+10
2
2, 10, 28, 110, 182, 408, 570, 1012, 2030, 2480, 4218, 5740, 6622, 8648, 12402, 17110, 18910, 25058, 29820, 32412, 41080, 47642, 58740, 76048, 85850, 91052, 102078, 107910, 120232, 170688, 187330, 214268, 223790, 275650, 286900, 322478, 360882, 388108, 431462
OFFSET
2,1
COMMENTS
Summation of products of partitions into two parts of prime(n): a(6) = (1*12) + (2*11) + (3*10) + (4*9) + (5*8) + (6*7) = 182. - César Aguilera, Feb 20 2018
LINKS
FORMULA
a(n) ~ (n log n)^3/12. - Charles R Greathouse IV, Feb 28 2018
MAPLE
a:= n-> (p->p*(p^2-1)/12)(ithprime(n)):
seq(a(n), n=2..40); # Alois P. Heinz, Mar 08 2022
MATHEMATICA
Table[(Prime[n] + 1) Prime[n](Prime[n] - 1)/12, {n, 2, 100}]
((#-1)#(#+1))/12&/@Prime[Range[2, 40]] (* Harvey P. Dale, Mar 08 2022 *)
PROG
(PARI) a(n, p=prime(n))=binomial(p+1, 3)/2 \\ Charles R Greathouse IV, Feb 28 2018
(Magma) [(NthPrime(n) + 1)*NthPrime(n)*(NthPrime(n) - 1)/12: n in [2..50]]; // G. C. Greubel, Apr 30 2018
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Feb 06 2007
STATUS
approved
Fully multiplicative with a(p) = p*(p+1)/2 for prime p.
+10
2
1, 3, 6, 9, 15, 18, 28, 27, 36, 45, 66, 54, 91, 84, 90, 81, 153, 108, 190, 135, 168, 198, 276, 162, 225, 273, 216, 252, 435, 270, 496, 243, 396, 459, 420, 324, 703, 570, 546, 405, 861, 504, 946, 594, 540, 828, 1128, 486, 784, 675, 918, 819, 1431, 648, 990, 756
OFFSET
1,2
COMMENTS
There are analogs with the triangular numbers replaced by some other sequence, but this was chosen because of the parity coincidences of A034953.
LINKS
FORMULA
a((p_1)^e_1)*(p_2)^e_2)*...*(p_k)^e_k)) = (T((p_1))^e_1)*T((p_2))^e_2)*...*T((p_k))^e_k, where T(i) = A000217(i). a(p_i) = A034953(i).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 - 2/(p*(p+1))^(-1) = 2.12007865309570462566... . - Amiram Eldar, Dec 24 2022
Dirichlet g.f.: Product_{p prime} (1 + (p^2 + p) / (2*p^s - p^2 - p)). - Vaclav Kotesovec, Apr 05 2023
MATHEMATICA
f[p_, e_] := (p*(p + 1)/2)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* Amiram Eldar, Dec 24 2022 *)
PROG
(PARI) a(n)=my(f=factor(n)); prod(i=1, #f[, 1], binomial(f[i, 1]+1, 2)^f[i, 2]) /* Charles R Greathouse IV, Sep 09 2010 */
(PARI) for(n=1, 100, print1(direuler(p=2, n, 1 + (p^2 + p) / (2/X - p^2 - p))[n], ", ")) \\ Vaclav Kotesovec, Apr 05 2023
KEYWORD
mult,easy,nonn
AUTHOR
Jonathan Vos Post, Oct 10 2007
STATUS
approved
Triangular numbers p*(p+1)/2 with p prime such that 1+(number of prime factors of p+1) is prime.
+10
2
3, 6, 15, 91, 276, 703, 1431, 1770, 1891, 2701, 3486, 4005, 5356, 8646, 9730, 11175, 11476, 12403, 18721, 19503, 24976, 25878, 27261, 28680, 38503, 43071, 47278, 49141, 60378, 61075, 64620, 72010, 75855, 79003, 88831, 98346, 104653, 106491
OFFSET
1,1
COMMENTS
Triangular numbers n(n+1)/2 such that n and A073093(n+1) are both prime.
LINKS
EXAMPLE
3 has one prime factor; 1+1 = 2 is prime, hence 2*3/2 = 3 is in the sequence.
14 = 2*7 has two prime factors; 1+2 = 3 is prime, hence 13*14/2 = 91 is in the sequence.
24 = 2*2*2*3 has four prime factors; 1+4 = 5 is prime, hence 23*24/2 = 276 is in the sequence.
MATHEMATICA
aQ[n_] := PrimeQ[n] && PrimeQ[PrimeOmega[n + 1] + 1]; p = Select[Range[470], aQ]; p*(p + 1)/2 (* Amiram Eldar, Aug 31 2019 *)
PROG
(Magma) [ p*(p+1)/2: p in PrimesUpTo(490) | IsPrime(1 + &+[ f[2]: f in Factorization(p+1) ]) ];
CROSSREFS
Cf. A000217 (triangular numbers), A000040 (prime numbers), A001222 (number of prime divisors of n), A073093.
Subsequence of A034953. - R. J. Mathar, Jan 03 2009
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited, corrected (3 inserted) and extended beyond a(16) by Klaus Brockhaus, Jan 05 2009
3 inserted and extended by R. J. Mathar, Jan 03 2009
STATUS
approved
Octagonal numbers with prime indices.
+10
2
8, 21, 65, 133, 341, 481, 833, 1045, 1541, 2465, 2821, 4033, 4961, 5461, 6533, 8321, 10325, 11041, 13333, 14981, 15841, 18565, 20501, 23585, 28033, 30401, 31621, 34133, 35425, 38081, 48133, 51221, 56033, 57685, 66305, 68101, 73633, 79381, 83333, 89441, 95765
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Octagonal Number
Eric Weisstein's World of Mathematics, Prime Number
FORMULA
a(n) = prime(n)*(3*prime(n) - 2) = A000040(n)*(3*A000040(n) - 2).
a(n) = A000567(A000040(n)).
a(n) = sigma_0(24^(prime(n) - 1)) = A000005(A009968(A000040(n) - 1)).
MATHEMATICA
Table[Prime[n] (3 Prime[n] - 2), {n, 1, 45}]
PROG
(PARI) lista(nn) = forprime(p=2, nn, print1(p*(3*p-2), ", ")); \\ Altug Alkan, Jan 11 2016
(Magma) [NthPrime(n)*(3*NthPrime(n)-2): n in [1..50]]; // Vincenzo Librandi, Jan 12 2016
(Python)
from sympy import prime
def a(n): p = prime(n); return p*(3*p-2)
print([a(n) for n in range(1, 42)]) # Michael S. Branicky, Aug 21 2021
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Jan 11 2016
STATUS
approved

Search completed in 0.022 seconds