[go: up one dir, main page]

login
Search: a001235 -id:a001235
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) is the number of partitions of n into 2 positive cubes.
+10
9
0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1730
COMMENTS
In other words, number of solutions to the equation x^3 + y^3 = n with x >= y > 0. - Antti Karttunen, Aug 28 2017
The first term > 1 is a(1729) = 2. - Michel Marcus, Apr 23 2019
FORMULA
If a(n) > 0 then A025456(n + k^3) > 0 for k>0; a(A113958(n)) > 0; a(A003325(n)) > 0. - Reinhard Zumkeller, Jun 03 2006
a(n) >= A025468(n). - Antti Karttunen, Aug 28 2017
a(n) = [x^n y^2] Product_{k>=1} 1/(1 - y*x^(k^3)). - Ilya Gutkovskiy, Apr 23 2019
MATHEMATICA
Table[Count[IntegerPartitions[n, {2}], _?(AllTrue[Surd[#, 3], IntegerQ]&)], {n, 0, 110}] (* Harvey P. Dale, Nov 23 2022 *)
PROG
(Scheme) (define (A025455 n) (let loop ((x (A048766 n)) (s 0)) (let* ((x3 (A000578 x)) (y3 (- n x3))) (if (< x3 y3) s (loop (- x 1) (+ s (if (and (> y3 0) (= (A000578 (A048766 y3)) y3)) 1 0))))))) ;; Antti Karttunen, Aug 28 2017
CROSSREFS
Cf. A025456, A025468, A003108, A003325, A000578, A048766, A001235 (two or more ways, positions where a(n) > 1).
Cf. also A025426, A216284.
KEYWORD
nonn
EXTENSIONS
Secondary offset added by Antti Karttunen, Aug 28 2017
Secondary offset corrected by Michel Marcus, Apr 23 2019
STATUS
approved
Product of n-th prime and n-th prime written backwards.
+10
8
4, 9, 25, 49, 121, 403, 1207, 1729, 736, 2668, 403, 2701, 574, 1462, 3478, 1855, 5605, 976, 5092, 1207, 2701, 7663, 3154, 8722, 7663, 10201, 31003, 75007, 98209, 35143, 91567, 17161, 100147, 129409, 140209, 22801, 117907, 58843, 127087
OFFSET
1,1
COMMENTS
a(8) = 1729 is the second taxicab number, also called the Hardy-Ramanujan number (see A001235, A011541 and A133029).
LINKS
FORMULA
a(n) = A000040(n) * A004087(n)
EXAMPLE
a(8) = 1729 because the 8th prime is 19 and 19 written backwards is 91 and 19*91 = 1729.
MATHEMATICA
#*FromDigits[Reverse[IntegerDigits[#]]] & /@ Prime[Range[1, 50]] (* G. C. Greubel, Oct 02 2017 *)
#*IntegerReverse[#]&/@Prime[Range[40]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 29 2021 *)
PROG
(PARI) vector(60, n, prime(n)*subst(Polrev(digits(prime(n))), x, 10)) \\ Michel Marcus, Dec 17 2014
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Omar E. Pol, Oct 27 2007
STATUS
approved
a(n) is the smallest number that is the sum of n positive cubes in two ways.
+10
8
1729, 251, 219, 157, 158, 131, 132, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126
OFFSET
2,1
COMMENTS
This is r(n,3,2) in Alter's notation.
LINKS
R. Alter, Computations and generalizations on a remark of Ramanujan, pp. 182-196 of "Analytic Number Theory (Philadelphia, 1980)", ed. M. I. Knopp, Lect. Notes Math., Vol. 899, 1981. See Table 2, page 190.
FORMULA
a(n) = n+63 for n >= 9.
EXAMPLE
a(2) = 1729 = 12^3 + 1^3 = 10^3 + 9^3 (the famous Hardy-Ramanujan number).
a(3) = 251 = 5^3 + 5^3 + 1^3 = 6^3 + 3^3 + 2^3.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 03 2021
STATUS
approved
Positive centered cube numbers that can be written as the difference of two positive cubes: a(n) = t*(3*t^2 + 4)*(t^2*(3*t^2 + 4)^2 + 3)/4 with t = 2*n-1 and n > 0.
+10
8
91, 201159, 15407765, 295233841, 2746367559, 16448122691, 73287987409, 264133278045, 811598515091, 2202365761759, 5410166901741, 12249942682409, 25914353312575, 51755729480091, 98389720844009, 179211321358741, 314429627203659, 533744613620855, 879807401606341, 1412624924155809
OFFSET
1,1
COMMENTS
Numbers A > 0 such that A = B^3 + (B+1)^3 = C^3 - D^3 and such that C - D = 2n - 1, with C > D > B > 0, and A = t*(3*t^2 + 4)*(t^2*(3*t^2 + 4)^2 + 3)/4 with t = 2*n-1, and where A = a(n) (this sequence), B = A352756(n), C = A352757(n) and D = A352758(n).
There are infinitely many such numbers a(n) = A in this sequence.
Subsequence of A005898, of A352133 and of A352220.
LINKS
A. Grinstein, Ramanujan and 1729, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998.
Vladimir Pletser, Euler's and the Taxi-Cab relations and other numbers that can be written twice as sums of two cubed integers, submitted. Preprint available on ResearchGate, 2022.
Eric Weisstein's World of Mathematics, Centered Cube Number
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n) = A352756(n)^3 + (A352756(n) + 1)^3 = A352757(n)^3 - A352758(n)^3 and A352757(n) - A352758(n) = 2n - 1.
a(n) = (2*n - 1)*(3*(2*n - 1)^2 + 4)*((2*n - 1)^2*(3*(2*n - 1)^2 + 4)^2 + 3)/4.
a(n) can be extended for negative n such that a(-n) = -a(n+1).
EXAMPLE
a(1) = 91 belongs to the sequence because 91 = 3^3 + 4^3 = 6^3 - 5^3 and 6 - 5 = 1 = 2*1 - 1.
a(2) = 201159 belongs to the sequence because 201159 = 46^3 + 47^3 = 151^3 - 148^3 and 151 - 148 = 3 = 2*2 - 1.
a(3) = (2*3 - 1)*(3*(2*3 - 1)^2 + 4)*((2*3 - 1)^2*(3*(2*3 - 1)^2 + 4)^2 + 3)/4 = 15407765.
MAPLE
restart; for n to 20 do (1/4)*(2*n-1)*(3*(2*n-1)^2+4)*((2*n-1)^2*(3*(2*n-1)^2+4)^2+3) end do;
KEYWORD
nonn,easy
AUTHOR
Vladimir Pletser, Apr 02 2022
STATUS
approved
Positive numbers k such that the centered cube number k^3 + (k+1)^3 is equal to the difference of two positive cubes and to A352755(n).
+10
8
3, 46, 197, 528, 1111, 2018, 3321, 5092, 7403, 10326, 13933, 18296, 23487, 29578, 36641, 44748, 53971, 64382, 76053, 89056, 103463, 119346, 136777, 155828, 176571, 199078, 223421, 249672, 277903, 308186, 340593, 375196, 412067, 451278, 492901, 537008, 583671, 632962, 684953, 739716, 797323, 857846, 921357
OFFSET
1,1
COMMENTS
Numbers B > 0 such that the centered cube number B^3 + (B+1)^3 is equal to the difference of two positive cubes, i.e., A = B^3 + (B+1)^3 = C^3 - D^3 and such that C - D = 2n - 1, with C > D > B > 0, and A > 0, A = t*(3*t^2 + 4)*(t^2*(3*t^2 + 4)^2 + 3)/4 with t = 2*n-1, and where A = A352755(n), B = a(n) (this sequence), C = A352757(n) and D = A352758(n).
There are infinitely many such numbers a(n) = B in this sequence.
Subsequence of A352134 and of A352221.
LINKS
A. Grinstein, Ramanujan and 1729, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998.
Vladimir Pletser, Euler's and the Taxi-Cab relations and other numbers that can be written twice as sums of two cubed integers, submitted. Preprint available on ResearchGate, 2022.
Eric Weisstein's World of Mathematics, Centered Cube Number
FORMULA
a(n)^3 + (a(n)+1)^3 = A352757(n)^3 - A352758(n)^3 and A352757(n) - A352758(n) = 2*n - 1.
a(n) = ((2*n - 1)*(3*(2*n - 1)^2 + 4) - 1)/2.
For n > 3, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 72, with a(1) = 3, a(2) = 46 and a(3) = 197.
a(n) can be extended for negative n such that a(-n) = -a(n+1) - 1.
G.f.: x*(3 + 34*x + 31*x^2 + 4*x^3)/(1 - x)^4. - Stefano Spezia, Apr 08 2022
EXAMPLE
a(1) = 3 is a term because 3^3 + 4^3 = 6^3 - 5^3 and 6 - 5 = 1 = 2*1 - 1.
a(2) = 46 is a term because 46^3 + 47^3 = 151^3 - 148^3 and 151 - 148 = 3 = 2*2 - 1.
a(3) = ((2*3 - 1)*(3*(2*3 - 1)^2 + 4) - 1)/2 = 197.
a(4) = 3*197 - 3*46 + 3 + 72 = 528.
MAPLE
restart; for n to 20 do (1/2)* ((2*n - 1)*(3*(2*n - 1)^2 + 4) - 1); end do;
KEYWORD
nonn,easy
AUTHOR
Vladimir Pletser, Apr 02 2022
STATUS
approved
a(n) = (3*(2*n - 1)^2*((2*n - 1)^2 + 2) + 2*n + 1)/2 for n > 0.
+10
8
6, 151, 1016, 3753, 10090, 22331, 43356, 76621, 126158, 196575, 293056, 421361, 587826, 799363, 1063460, 1388181, 1782166, 2254631, 2815368, 3474745, 4243706, 5133771, 6157036, 7326173, 8654430, 10155631, 11844176, 13735041, 15843778, 18186515, 20779956, 23641381, 26788646, 30240183, 34015000, 38132681
OFFSET
1,1
COMMENTS
Numbers C > 0 such that A = B^3 + (B+1)^3 = C^3 - D^3 such that the difference C - D is odd, C - D = 2*n - 1, and the difference between the positive cubes C^3 - D^3 is equal to a centered cube number, C^3 - D^3 = B^3 + (B+1)^3, with C > D > B > 0, and A > 0, A = t*(3*t^2 + 4)*(t^2*(3*t^2 + 4)^2 + 3)/4 with t = 2*n-1, and where A = A352755(n), B = A352756(n), C = a(n) (this sequence), and D = A352758(n).
There are infinitely many such numbers a(n) = C in this sequence.
LINKS
A. Grinstein, Ramanujan and 1729, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998.
Vladimir Pletser, Euler's and the Taxi-Cab relations and other numbers that can be written twice as sums of two cubed integers, submitted. Preprint available on ResearchGate, 2022.
Eric Weisstein's World of Mathematics, Centered Cube Number
FORMULA
a(n)^3 - A352758(n)^3 = A352756(n)^3 + (A352756(n) + 1)^3 = A352755(n) and a(n) - A352758(n) = 2*n - 1.
a(n) = (3*(2*n - 1)^2*((2*n - 1)^2 + 2) + 2*n + 1)/2.
For n > 3, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 576*(n - 2), with a(1) = 6, a(2) = 151 and a(3) = 1016.
a(n) can be extended for negative n such that a(-n) = a(n+1) - (2*n + 1).
G.f.: x*(6 + 121*x + 321*x^2 + 123*x^3 + 5*x^4)/(1 - x)^5. - Stefano Spezia, Apr 08 2022
EXAMPLE
a(1) = 6 belongs to the sequence as 6^3 - 5^3 = 3^3 + 4^3 = 91 and 6 - 5 = 1 = 2*1 - 1.
a(2) = 151 belongs to the sequence as 151^3 - 148^3 = 46^3 + 47^3 = 201159 and 151 - 148 = 3 = 2*2 - 1.
a(3) = (3(2*3 - 1)^2*((2*3 - 1)^2 + 2) + 2*3 + 1)/2 = 1016.
a(4) = 3*a(3) - 3*a(2) + a(1) + 576*2 = 3*1016 - 3*151 + 6 + 576*2 = 3753.
MAPLE
restart; for n to 20 do (1/2)*(3*(2*n - 1)^2*((2*n - 1)^2 + 2) + 2*n + 1); end do;
PROG
(Python)
def A352757(n): return n*(n*(n*(24*n - 48) + 48) - 23) + 5 # Chai Wah Wu, Jul 10 2022
KEYWORD
nonn,easy
AUTHOR
Vladimir Pletser, Apr 02 2022
STATUS
approved
Centered cube numbers that are the difference of two positive cubes; a(n) = 27*t^3*(27*t^6 + 1)/4 with t = 2*n-1.
+10
8
189, 3587409, 355957875, 7354447191, 70607389041, 429735975669, 1932670025559, 7006302268875, 21612640524741, 58809832966521, 144757538551899, 328260072633759, 695228576765625, 1389765141771741, 2643927354266751, 4818621138983379, 8458493032498509, 14364150148238625, 23685527077994691, 38040743821584231
OFFSET
1,1
COMMENTS
Numbers A > 0 such that A = B^3 + (B+1)^3 = C^3 - D^3 and such that C - D = 3*(2*n - 1) == 3 (mod 6), with (for n > 1) C > D > B > 0, and A = as 27*t^3*(27*t^6 + 1)/4 with t = 2*n-1, and where A = a(n) (this sequence), B = A355751(n), C = A355752(n) and D = A355753(n).
There are infinitely many such numbers a(n) = A in this sequence.
Subsequence of A005898, and of A352133.
LINKS
A. Grinstein, Ramanujan and 1729, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998.
Vladimir Pletser, Euler's and the Taxi-Cab relations and other numbers that can be written twice as sums of two cubed integers, submitted. Preprint available on ResearchGate, 2022.
Eric Weisstein's World of Mathematics, Centered Cube Number
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n) = A355751(n)^3 + (A355751(n) + 1)^3 = A355752(n)^3 - A355753(n)^3 and A355752(n) - A355753(n) = 3*(2*n - 1).
a(n) = 27*(2*n - 1)^3*(27*(2*n - 1)^6 + 1)/4.
a(n) can be extended for negative n such that a(-n) = -a(n+1).
EXAMPLE
a(1) = 189 belongs to the sequence because 189 = 4^3 + 5^3 = 6^3 - 3^3 and 6 - 3 = 3 = 3*(2*1 - 1).
a(2) = 3587409 belongs to the sequence because 3587409 = 121^3 + 122^3 = 369^3 - 360^3 and 369 - 360 = 9 = 3*(2*2 - 1).
a(3) = 27*(2*3 - 1)^3*(27*(2*3 - 1)^6 + 1)/4 = 355957875.
MAPLE
restart; for n from 1 to 20 do 27*(2*n-1)^3*(27*(2*n-1)^6+1)*(1/4); end do;
KEYWORD
nonn,easy
AUTHOR
Vladimir Pletser, Apr 02 2022
STATUS
approved
Sum of two coprime cubes in at least three ways.
+10
7
15170835645, 208438080643, 320465258659, 1658465000647, 3290217425101, 3938530307257, 7169838686017, 13112542594333, 24641518275703, 36592635038993, 36848138663889, 41332017729268, 74051580874005
OFFSET
1,1
LINKS
D. W. Wilson, The Fifth Taxicab Number is 48988659276962496, J. Integer Sequences, Vol. 2, 1999, #99.1.9.
CROSSREFS
KEYWORD
nonn
STATUS
approved
Products of three distinct primes of the form 6*k + 1.
+10
7
1729, 2821, 3367, 3913, 4123, 4921, 5551, 5719, 6097, 6643, 7189, 7657, 8029, 8113, 8827, 8911, 9139, 9331, 9373, 9709, 9919, 10507, 10621, 11137, 11557, 12649, 12901, 13237, 13699, 13741, 14287, 14497, 14539, 14833, 14911, 15067, 15799, 15841
OFFSET
1,1
COMMENTS
a(1) = 1729 is the Hardy-Ramanujan number (see taxicab numbers in A001235, A011541).
Equivalently, products of three distinct primes of the form 3*k + 1. - Omar E. Pol, Feb 17 2018
LINKS
G. L. Honaker, Jr. and Chris Caldwell, Prime Curios!, Number 1729.
EXAMPLE
The first three primes of the form 6*k + 1 are 7, 13 and 19, so a(1) = 7*13*19 = 1729. - Omar E. Pol, Feb 17 2018
MATHEMATICA
Module[{nn=40, prs}, prs=Select[6*Range[nn]+1, PrimeQ]; Take[Times@@@ Subsets[ prs, {3}]//Union, nn]] (* Harvey P. Dale, Feb 17 2018 *)
PROG
(PARI) fct(n, o=[1])=if(n>1, concat(apply(t->vector(t[2], i, t[1]), Vec(factor(n)~))), o) \\ after M. F. Hasler in A027746
is(n) = my(f=fct(n)); if(#f!=3 || f!=vecsort(f, , 8), return(0), for(k=1, #f, if((f[k]-1)/6!=ceil((f[k]-1)/6), return(0)))); 1 \\ Felix Fröhlich, Jul 07 2021
CROSSREFS
Subsequence of A007304.
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jan 18 2009
EXTENSIONS
a(5)-a(38) from Donovan Johnson, Jan 28 2009
STATUS
approved
Numbers that are sums of two coprime positive cubes.
+10
7
2, 9, 28, 35, 65, 91, 126, 133, 152, 189, 217, 341, 344, 351, 370, 407, 468, 513, 539, 559, 637, 730, 737, 793, 854, 855, 1001, 1027, 1072, 1241, 1332, 1339, 1343, 1358, 1395, 1456, 1547, 1674, 1729, 1843, 1853, 2060, 2071, 2198, 2205, 2224, 2261, 2322, 2331, 2413
OFFSET
1,1
COMMENTS
Not a subsequence of A020898: non-cubefree members of this sequence include 152, 189, 344, 351, 513, 1072. - Robert Israel, Mar 16 2016
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..10000
R. C. Baker, Sums of two relatively prime cubes, Acta Arithmetica 129(2007), 103-146.
Kevin A. Broughan, A computational approach to characterizing the sum of two cubes, Hamilton: University of Waikato, 2001, p. 9.
P. Erdős and K. Mahler, On the number of integers which can be represented by a binary form, J. London Math. Soc. 13 (1938), pp. 134-139. [alternate link]
P. Erdős, On the integers of the form x^k + y^k, J. London Math. Soc. 14 (1939), pp. 250-254.
FORMULA
Erdős & Mahler shows that a(n) < kn^(3/2) for some k. Erdős later gives an elementary proof. - Charles R Greathouse IV, Dec 05 2012
EXAMPLE
28 is in the sequence since 1^3 + 3^3 = 28 and (1, 3) = 1.
MAPLE
N:= 10000: # to get all terms <= N
S:= {2, seq(seq(x^3 + y^3, y = select(t -> igcd(t, x)=1, [$x+1 .. floor((N - x^3)^(1/3))])), x = 1 .. floor((N/2)^(1/3)))}:
sort(convert(S, list)); # Robert Israel, Mar 15 2016
MATHEMATICA
nn = 2500; Union[Flatten[Table[If[CoprimeQ[x, y] == True, x^3 + y^3, {}], {x, nn^(1/3)}, {y, x, (nn - x^3)^(1/3)}]]]
Select[Range@ 2500, Length[PowersRepresentations[#, 2, 3] /. {{0, _} -> Nothing, {a_, b_} /; ! CoprimeQ[a, b] -> Nothing}] > 0 &] (* Michael De Vlieger, Mar 15 2016 *)
PROG
(PARI) is(n)=for(k=1, (n\2+.5)^(1/3), if(gcd(k, n)==1&&ispower(n-k^3, 3), return(1))); 0 \\ Charles R Greathouse IV, Apr 13 2012
(PARI) list(lim)=my(v=List()); forstep(x=1, lim^(1/3), 2, forstep(y=2, (lim-x^3+.5)^(1/3), 2, if(gcd(x, y)==1, listput(v, x^3+y^3))); forstep(y=1, min((lim-x^3+.5)^(1/3), x), 2, if(gcd(x, y)==1, listput(v, x^3+y^3)))); vecsort(Vec(v), , 8) \\ Charles R Greathouse IV, Dec 05 2012
CROSSREFS
Subsequence of A003325.
KEYWORD
nonn
AUTHOR
STATUS
approved

Search completed in 0.051 seconds