[go: up one dir, main page]

login
Search: a001235 -id:a001235
     Sort: relevance | references | number | modified | created      Format: long | short | data
Probably an incomplete version of A001235.
+20
0
1729, 4104, 148941, 160284, 171288, 1331064
OFFSET
0,1
KEYWORD
dead
STATUS
approved
Taxi-cab numbers (A001235) n such that n+1 is the sum of two positive cubes (A003325).
+20
0
18426689288, 20689194392, 166940780112, 3956149616328, 53611112714103, 562576374032408, 11110701930362937, 17146742033697471, 24658089729767487, 45512714439607464
OFFSET
1,1
COMMENTS
Numbers n such that n+1 and n can be written, respectively, in at least one and two ways as the sum of two positive cubes.
EXAMPLE
a(1) = 2514^3 + 1364^3 = 2498^3 + 1416^3, a(1)+1 = 2641^3 + 182^3.
a(2) = 2492^3 + 1734^3 = 2726^3 + 756^3, a(2)+1 = 2282^3 + 2065^3.
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov and Giovanni Resta, May 27 2016
STATUS
approved
Numbers n such that n*(n+1)/2 is a Taxi-cab number (A001235).
+20
0
349999, 591408, 405332018, 525796270
OFFSET
1,1
COMMENTS
In other words, numbers n such that 0 + 1 + 2 + ... + n = a^3 + b^3 = c^3 + d^3 where (a, b) and (c, d) are distinct pairs and a, b, c, d > 0 is soluble.
It is known that there is no triangular number that is also a cube except 0 and 1. So if the sum of k positive cubes is a triangular number that is bigger than 1, then the minimum value of k is 2. At this point sequence focuses on that question: What are the triangular numbers that are the sum of two positive cubes in more than one way?
A000217(349999) = 61249825000 is the least triangular number that is also a Taxi-cab number.
a(5) > 10^9. - Giovanni Resta, Jul 04 2016
EXAMPLE
349999 is a term because 349999*(349999+1) / 2 = 61249825000 = 820^3 + 3930^3 = 3018^3 + 3232^3.
591408 is a term because 591408*(591408+1) / 2 = 174882006936 = 2070^3 + 5496^3 = 3238^3 + 5204^3.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Altug Alkan, Jul 02 2016
EXTENSIONS
a(3)-a(4) from Giovanni Resta, Jul 04 2016
STATUS
approved
Taxi-cab numbers (A001235) that are of the form x^2 + y^4 in more than one way (x, y > 0).
+20
0
27445392, 1644443281, 2367885312, 5687433577, 112416325632, 208265121792, 900069054976, 1976398601697, 6735639678976, 9698858237952, 9911785815477, 14585606569872, 15283760730112, 18156501172017, 23295727931392, 29871321586561, 33510832422912, 67250060669952
OFFSET
1,1
COMMENTS
A272701(3) = 27445392 is the least number with the property that sequence focuses on.
If n = a^3 + b^3 = c^3 + d^3 = x^2 + y^4 = z^2 + t^4, then n*k^12 = (a*k^4)^3 + (b*k^4)^3 = (c*k^4)^3 + (d*k^4)^3 = (x*k^6)^2 + (y*k^3)^4 = (z*k^6)^2 + (t*k^3)^4. So if n is this sequence, then n*k^12 is also in this sequence for all k > 1.
EXAMPLE
27445392 is a term because 27445392 = 141^3 + 291^3 = 198^3 + 270^3 = 756^2 + 72^4 = 5076^2 + 36^4.
112416325632 is a term because 112416325632 = 27445392*2^12.
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Jun 19 2016
EXTENSIONS
a(2)-a(18) from Giovanni Resta, Jun 19 2016
STATUS
approved
Numbers that are the sum of 2 positive cubes.
+10
136
2, 9, 16, 28, 35, 54, 65, 72, 91, 126, 128, 133, 152, 189, 217, 224, 243, 250, 280, 341, 344, 351, 370, 407, 432, 468, 513, 520, 539, 559, 576, 637, 686, 728, 730, 737, 756, 793, 854, 855, 945, 1001, 1008, 1024, 1027, 1064, 1072, 1125, 1216, 1241, 1332, 1339, 1343
OFFSET
1,1
COMMENTS
It is conjectured that this sequence and A052276 have infinitely many numbers in common, although only one example (128) is known. [Any further examples are greater than 5 million. - Charles R Greathouse IV, Apr 12 2020] [Any further example is greater than 10^12. - M. F. Hasler, Jan 10 2021]
A113958 is a subsequence; if m is a term then m+k^3 is a term of A003072 for all k > 0. - Reinhard Zumkeller, Jun 03 2006
From James R. Buddenhagen, Oct 16 2008: (Start)
(i) N and N+1 are both the sum of two positive cubes if N=2*(2*n^2 + 4*n + 1)*(4*n^4 + 16*n^3 + 23*n^2 + 14*n + 4), n=1,2,....
(ii) For n >= 2, let N = 16*n^6 - 12*n^4 + 6*n^2 - 2, so N+1 = 16*n^6 - 12*n^4 + 6*n^2 - 1.
Then the identities 16*n^6 - 12*n^4 + 6*n^2 - 2 = (2*n^2 - n - 1)^3 + (2*n^2 + n - 1)^3 16*n^6 - 12*n^4 + 6*n^2 - 1 = (2*n^2)^3 + (2*n^2 - 1)^3 show that N, N+1 are in the sequence. (End)
If n is a term then n*m^3 (m >= 2) is also a term, e.g., 2m^3, 9m^3, 28m^3, and 35m^3 are all terms of the sequence. "Primitive" terms (not of the form n*m^3 with n = some previous term of the sequence and m >= 2) are 2, 9, 28, 35, 65, 91, 126, etc. - Zak Seidov, Oct 12 2011
This is an infinite sequence in which the first term is prime but thereafter all terms are composite. - Ant King, May 09 2013
By Fermat's Last Theorem (the special case for exponent 3, proved by Euler, is sufficient), this sequence contains no cubes. - Charles R Greathouse IV, Apr 03 2021
REFERENCES
C. G. J. Jacobi, Gesammelte Werke, vol. 6, 1969, Chelsea, NY, p. 354.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..20000 (first 1000 terms from T. D. Noe)
F. Beukers, The Diophantine equation Ax^p+By^q=Cz^r, Duke Math. J. 91 (1998), 61-88.
Kevin A. Broughan, Characterizing the sum of two cubes, J. Integer Seqs., Vol. 6, 2003.
Nils Bruin, On powers as sums of two cubes, in Algorithmic number theory (Leiden, 2000), 169-184, Lecture Notes in Comput. Sci., 1838, Springer, Berlin, 2000.
C. G. J. Jacobi, Gesammelte Werke.
Michael Penn, 1674 is not a perfect cube, 2020 video
Eric Weisstein's World of Mathematics, Cubic Number
MATHEMATICA
nn = 2*20^3; Union[Flatten[Table[x^3 + y^3, {x, nn^(1/3)}, {y, x, (nn - x^3)^(1/3)}]]] (* T. D. Noe, Oct 12 2011 *)
With[{upto=2000}, Select[Total/@Tuples[Range[Ceiling[Surd[upto, 3]]]^3, 2], #<=upto&]]//Union (* Harvey P. Dale, Jun 11 2016 *)
PROG
(PARI) cubes=sum(n=1, 11, x^(n^3), O(x^1400)); v = select(x->x, Vec(cubes^2), 1); vector(#v, k, v[k]+1) \\ edited by Michel Marcus, May 08 2017
(PARI) isA003325(n) = for(k=1, sqrtnint(n\2, 3), ispower(n-k^3, 3) && return(1)) \\ M. F. Hasler, Oct 17 2008, improved upon suggestion of Altug Alkan and Michel Marcus, Feb 16 2016
(PARI) T=thueinit('z^3+1); is(n)=#select(v->min(v[1], v[2])>0, thue(T, n))>0 \\ Charles R Greathouse IV, Nov 29 2014
(PARI) list(lim)=my(v=List()); lim\=1; for(x=1, sqrtnint(lim-1, 3), my(x3=x^3); for(y=1, min(sqrtnint(lim-x3, 3), x), listput(v, x3+y^3))); Set(v) \\ Charles R Greathouse IV, Jan 11 2022
(Haskell)
a003325 n = a003325_list !! (n-1)
a003325_list = filter c2 [1..] where
c2 x = any (== 1) $ map (a010057 . fromInteger) $
takeWhile (> 0) $ map (x -) $ tail a000578_list
-- Reinhard Zumkeller, Mar 24 2012
(Python)
from sympy import integer_nthroot
def aupto(lim):
cubes = [i*i*i for i in range(1, integer_nthroot(lim-1, 3)[0] + 1)]
sum_cubes = sorted([a+b for i, a in enumerate(cubes) for b in cubes[i:]])
return [s for s in sum_cubes if s <= lim]
print(aupto(1343)) # Michael S. Branicky, Feb 09 2021
CROSSREFS
Subsequence of A004999 and hence of A045980; supersequence of A202679.
Cf. A024670 (2 distinct cubes), A003072, A001235, A011541, A003826, A010057, A000578, A027750, A010052, A085323 (n such that a(n+1)=a(n)+1).
KEYWORD
nonn,easy,nice
EXTENSIONS
Error in formula line corrected by Zak Seidov, Jul 23 2009
STATUS
approved
Taxicab, taxi-cab or Hardy-Ramanujan numbers: the smallest number that is the sum of 2 positive integral cubes in n ways.
+10
55
2, 1729, 87539319, 6963472309248, 48988659276962496, 24153319581254312065344
OFFSET
1,1
COMMENTS
The sequence is infinite: Fermat proved that numbers expressible as a sum of two positive integral cubes in n different ways exist for any n. Hardy and Wright give a proof in Theorem 412 of An Introduction of Theory of Numbers, pp. 333-334 (fifth edition), pp. 442-443 (sixth edition).
A001235 gives another definition of "taxicab numbers".
David W. Wilson reports a(6) <= 8230545258248091551205888. [But see next line!]
Randall L Rathbun has shown that a(6) <= 24153319581254312065344.
C. S. Calude, E. Calude and M. J. Dinneen, What is the value of Taxicab(6)?, 2003, show that with high probability, a(6) = 24153319581254312065344.
When negative cubes are allowed, such terms are called "Cabtaxi" numbers, cf. Boyer's web page, Wikipedia or MathWorld. - M. F. Hasler, Feb 05 2013
a(7) <= 24885189317885898975235988544. - Robert G. Wilson v, Nov 18 2012
a(8) <= 50974398750539071400590819921724352 = 58360453256^3 + 370298338396^3 = 7467391974^3 + 370779904362^3 = 39304147071^3 + 370633638081^3 = 109276817387^3 + 367589585749^3 = 208029158236^3 + 347524579016^3 = 224376246192^3 + 341075727804^3 = 234604829494^3 + 336379942682^3 = 288873662876^3 + 299512063576^3. - PoChi Su, May 16 2013
a(9) <= 136897813798023990395783317207361432493888. - PoChi Su, May 17 2013
From PoChi Su, Oct 09 2014: (Start)
The preceding bounds are not the best that are presently known.
An upper bound for a(22) was given by C. Boyer (see the C. Boyer link), namely
BTa(22)= 2^12 *3^9 * 5^9 *7^4 *11^3 *13^6 *17^3 *19^3 *31^4 *37^4 *43 *61^3 *73 *79^3 *97^3 *103^3 *109^3 *127^3 *139^3 *157 *181^3 *197^3 *397^3 *457^3 *503^3 *521^3 *607^3 *4261^3.
We also know that (97*491)^3*BTa(22) is an upper bound on a(23), corresponding to the sum x^3+y^3 with
x=2^5 *3^4 *5^3 *7 *11 *13^2 *17 *19^2 *31 *37 *61 *79 *103 *109 *127 *139 *181 *197 *397 *457 *503 *521 *607 *4261 *11836681,
y=2^4 *3^3 *5^3 *7 *11 *13^2 *17 *19 *31 *37 *61 *79 *89 *103 *109 *127 *139 *181 *197 *397 * 457 *503 * 521 *607 *4261 *81929041.
(End)
Conjecture: the number of distinct prime factors of a(n) is strictly increasing as n grows (this is not true if a(7) is equal to the upper bound given above), but never exceeds 2*n. - Sergey Pavlov, Mar 01 2017
REFERENCES
C. Boyer, "Les nombres Taxicabs", in Dossier Pour La Science, pp. 26-28, Volume 59 (Jeux math') April/June 2008 Paris.
R. K. Guy, Unsolved Problems in Number Theory, D1.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, pp. 333-334 (fifth edition), pp. 442-443 (sixth edition), see Theorem 412.
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 165 and 189.
LINKS
C. Boyer, New upper bounds for Taxicab and Cabtaxi numbers, JIS 11 (2008) 08.1.6.
C. S. & E. Calude and M. T. Dinneen, What is the value of Taxicab(6)?
C. S. Calude, E. Calude and M. J. Dinneen, What is the value of Taxicab(6)?, J. Universal Computer Science, 9 (2003), 1196-1203.
U. Hollerbach, The sixth taxicab number is 24153319581254312065344, posting to the NMBRTHRY mailing list, Mar 09 2008.
Bernd C. Kellner, On primary Carmichael numbers, Integers 22 (2022), Article #A38, 39 pp.; arXiv:1902.11283 [math.NT], 2019.
D. McKee, Taxicab numbers, Apr 24 2001.
J. C. Meyrignac, The Taxicab Problem
Ken Ono and Sarah Trebat-Leder, The 1729 K3 surface, arXiv:1510.00735 [math.NT], 2015.
I. Peterson, Math Trek, Taxicab Numbers
Randall L. Rathbun, Sixth Taxicab Number?, posting to the NMBRTHRY mailing list, Jul 16 2002.
W. Schneider, Taxicab Numbers
J. Silverman, Taxicabs and Sums of Two Cubes, American Mathematical Monthly, Volume 100, Issue 4 (Apr., 1993), 331-340.
Po-Chi Su, More Upper Bounds on Taxicab and Cabtaxi Numbers, Journal of Integer Sequences, 19 (2016), #16.4.3.
Eric Weisstein's World of Mathematics, Cubic Number
Eric Weisstein's World of Mathematics, Taxicab Number
Wikipedia, Taxicab number
D. W. Wilson, The Fifth Taxicab Number is 48988659276962496, J. Integer Sequences, Vol. 2, 1999, #99.1.9.
D. W. Wilson, Taxicab Numbers (last snapshot available on web.archive.org, as of June 2013).
FORMULA
a(n) <= A080642(n) for n > 0, with equality for n = 1, 2 (only?). - Jonathan Sondow, Oct 25 2013
a(n) > 113*n^3 for n > 1 (a trivial bound based on the number of available cubes; 113 < (1 - 2^(-1/3))^(-3)). - Charles R Greathouse IV, Jun 18 2024
EXAMPLE
From Zak Seidov, Mar 22 2013: (Start)
Values of {b,c}, a(n) = b^3 + c^3:
n = 1: {1,1}
n = 2: {1, 12}, {9, 10}
n = 3: {167, 436}, {228, 423}, {255, 414}
n = 4: {2421, 19083}, {5436, 18948}, {10200, 18072}, {13322, 16630}
n = 5: {38787, 365757}, {107839, 362753}, {205292, 342952}, {221424, 336588}, {231518, 331954}
n = 6: {582162, 28906206}, {3064173, 28894803}, {8519281, 28657487}, {16218068, 27093208}, {17492496, 26590452}, {18289922, 26224366}. (End)
CROSSREFS
Cf. A001235, A003826, A023050, A047696, A080642 (cubefree taxicab numbers).
KEYWORD
nonn,nice,hard,more
EXTENSIONS
Added a(6), confirmed by Uwe Hollerbach, communicated by Christian Schroeder, Mar 09 2008
STATUS
approved
Primary Carmichael numbers.
+10
25
1729, 2821, 29341, 46657, 252601, 294409, 399001, 488881, 512461, 1152271, 1193221, 1857241, 3828001, 4335241, 5968873, 6189121, 6733693, 6868261, 7519441, 10024561, 10267951, 10606681, 14469841, 14676481, 15247621, 15829633, 17098369, 17236801, 17316001, 19384289, 23382529, 29111881, 31405501, 34657141, 35703361, 37964809
OFFSET
1,1
COMMENTS
Squarefree integers m > 1 such that if prime p divides m, then the sum of the base-p digits of m equals p. It follows that m is then a Carmichael number (A002997).
Dickson's conjecture implies that the sequence is infinite, see Kellner 2019.
If m is a term and p is a prime factor of m, then p <= a*sqrt(m) with a = sqrt(66337/132673) = 0.7071..., where the bound is sharp.
The distribution of primary Carmichael numbers is A324317.
See Kellner and Sondow 2019 and Kellner 2019.
Primary Carmichael numbers are special polygonal numbers A324973. The rank of the n-th primary Carmichael number is A324976(n). See Kellner and Sondow 2019. - Jonathan Sondow, Mar 26 2019
The first term is the Hardy-Ramanujan number. - Omar E. Pol, Jan 09 2020
LINKS
Bernd C. Kellner, Table of n, a(n) for n = 1..10000 (computed by using Pinch's database, see link below)
Bernd C. Kellner, On primary Carmichael numbers, #A38 Integers 22 (2022), 39 p.; arXiv:1902.11283 [math.NT], 2019.
Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017.
Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, #A52 Integers 21 (2021), 21 p.; arXiv:1902.10672 [math.NT], 2019.
R. G. E. Pinch, The Carmichael numbers up to 10^18, 2008.
FORMULA
a_1 + a_2 + ... + a_k = p if p is prime and m = a_1 * p + a_2 * p^2 + ... + a_k * p^k with 0 <= a_i <= p-1 for i = 1, 2, ..., k (note that a_0 = 0).
EXAMPLE
1729 = 7 * 13 * 19 is squarefree, and 1729 in base 7 is 5020_7 = 5 * 7^3 + 0 * 7^2 + 2 * 7 + 0 with 5+0+2+0 = 7, and 1729 in base 13 is a30_13 with a+3+0 = 10+3+0 = 13, and 1729 in base 19 is 4f0_19 with 4+f+0 = 4+15+0 = 19, so 1729 is a member.
MATHEMATICA
SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
LP[n_] := Transpose[FactorInteger[n]][[1]];
TestCP[n_] := (n > 1) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] == # &];
Select[Range[1, 10^7, 2], TestCP[#] &]
PROG
(Perl) use ntheory ":all"; my $m; forsquarefree { $m=$_; say if @_ > 2 && is_carmichael($m) && vecall { $_ == vecsum(todigits($m, $_)) } @_; } 1e7; # Dana Jacobsen, Mar 28 2019
(Python)
from sympy import factorint
from sympy.ntheory import digits
def ok(n):
pf = factorint(n)
if n < 2 or max(pf.values()) > 1: return False
return all(sum(digits(n, p)[1:]) == p for p in pf)
print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 03 2022
CROSSREFS
Subsequence of A002997, A324315.
Least primary Carmichael number with n prime factors is A306657.
KEYWORD
nonn,base
AUTHOR
STATUS
approved
Consider the Diophantine equation x^3 + y^3 = z^3 + 1 (1 < x < y < z) or 'Fermat near misses'. Sequence gives values of z in monotonic increasing order.
+10
20
12, 103, 150, 249, 495, 738, 1544, 1852, 1988, 2316, 4184, 5262, 5640, 8657, 9791, 9953, 11682, 14258, 21279, 21630, 31615, 36620, 36888, 38599, 38823, 40362, 41485, 47584, 57978, 59076, 63086, 73967, 79273, 83711, 83802, 86166, 90030
OFFSET
1,1
COMMENTS
Numbers n such that n^3+1 is expressible as the sum of two nonzero cubes (both greater than 1).
Values of z associated with A050794.
Sequence is infinite. One subsequence is (from x = 1 + 9 m^3, y = 9 m^4, z = 3*m*(3*m^3 + 1), x^3 + y^3 = z^3 + 1): z(m) = 3*m*(3*m^3 + 1) = {12, 150, 738, 2316, 5640, 11682, 21630, 36888, 59076, 90030, ...} = a (1, 3, 6, 10, 13, 17, 20, 23, 30, 37, ...). - Zak Seidov, Sep 16 2013
Numbers n such that n^3+1 is a member of A001235. - Altug Alkan, May 09 2016
REFERENCES
Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.
LINKS
S. Ramanujan, Question 681, J. Ind. Math. Soc.
Eric Weisstein's World of Mathematics, Diophantine Equation - 3rd Powers
EXAMPLE
12 is a term because 10^3 + 9^3 = 12^3 + 1 (= 1729).
2316 is in the sequence because 577^3 + 2304^3 = 2316^3 + 1.
MATHEMATICA
r[z_] := Reduce[ 1 < x < y < z && x^3 + y^3 == z^3 + 1, {x, y}, Integers]; z = 4; A050791 = {}; While[z < 10^4, If[r[z] =!= False, Print[z]; AppendTo[A050791, z]]; z++]; A050791 (* Jean-François Alcover, Dec 27 2011 *)
PROG
(PARI) is(n)=if(n<2, return(0)); my(c3=n^3); for(a=2, sqrtnint(c3-5, 3), if(ispower(c3-1-a^3, 3), return(1))); 0 \\ Charles R Greathouse IV, Oct 26 2014
(PARI) T=thueinit('x^3+1); is(n)=n>8&&#select(v->min(v[1], v[2])>1, thue(T, n^3+1))>0 \\ Charles R Greathouse IV, Oct 26 2014
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Patrick De Geest, Sep 15 1999
EXTENSIONS
More terms from Michel ten Voorde
Extended through 47584 by Jud McCranie, Dec 25 2000
More terms from Don Reble, Nov 29 2001
Edited by N. J. A. Sloane, May 08 2007
STATUS
approved
Cubefree taxi-cab numbers.
+10
20
1729, 20683, 40033, 149389, 195841, 327763, 443889, 684019, 704977, 1845649, 2048391, 2418271, 2691451, 3242197, 3375001, 4342914, 4931101, 5318677, 5772403, 5799339, 6058747, 7620661, 8872487, 9443761, 10702783, 10765603, 13623913, 16387189, 16776487, 16983854, 17045567, 18406603
OFFSET
1,1
COMMENTS
Taxi-cab numbers (A001235) that are not divisible by any cube > 1.
A080642 belongs to another version that A011541 focuses on.
Cubeful taxi-cab numbers are 4104, 13832, 32832, 39312, 46683, 64232, 65728, 110656, 110808, 134379, 165464, 171288, ...
EXAMPLE
195841 is a term because 195841 is a member of A001235 and 195841 = 37*67*79.
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, May 08 2016
STATUS
approved
Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton (same as A160410, but a(1) = 1, not 4).
+10
19
0, 1, 9, 21, 49, 61, 97, 133, 225, 237, 273, 309, 417, 453, 561, 669, 961, 973, 1009, 1045, 1153, 1189, 1297, 1405, 1729, 1765, 1873, 1981, 2305, 2413, 2737, 3061, 3969, 3981, 4017, 4053, 4161, 4197, 4305, 4413, 4737, 4773, 4881, 4989, 5313, 5421, 5745
OFFSET
0,3
COMMENTS
The structure has a fractal behavior similar to the toothpick sequence A139250.
First differences: A161415, where there is an explicit formula for the n-th term.
For the illustration of a(24) = 1729 (the Hardy-Ramanujan number) see the Links section.
LINKS
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
FORMULA
a(n) = 1 + 4*A219954(n), n >= 1. - M. F. Hasler, Dec 02 2012
a(2^k) = (2^(k+1) - 1)^2. - Omar E. Pol, Jan 05 2013
EXAMPLE
From Omar E. Pol, Sep 24 2015: (Start)
With the positive terms written as an irregular triangle in which the row lengths are the terms of A011782 the sequence begins:
1;
9;
21, 49;
61, 97, 133, 225;
237, 273, 309, 417, 453, 561, 669, 961;
...
Right border gives A060867.
This triangle T(n,k) shares with the triangle A256530 the terms of the column k, if k is a power of 2, for example both triangles share the following terms: 1, 9, 21, 49, 61, 97, 225, 237, 273, 417, 961, etc.
.
Illustration of initial terms, for n = 1..10:
. _ _ _ _ _ _ _ _
. | _ _ | | _ _ |
. | | _|_|_ _ _ _ _ _ _ _ _ _ _|_|_ | |
. | |_| _ _ _ _ _ _ _ _ |_| |
. |_ _| | _|_ _|_ | | _|_ _|_ | |_ _|
. | |_| _ _ |_| |_| _ _ |_| |
. | | | _|_|_ _ _|_|_ | | |
. | _| |_| _ _ _ _ |_| |_ |
. | | |_ _| | _|_|_ | |_ _| | |
. | |_ _| | |_| _ |_| | |_ _| |
. | _ _ | _| |_| |_ | _ _ |
. | | _|_| | |_ _ _| | |_|_ | |
. | |_| _| |_ _| |_ _| |_ |_| |
. | | | |_ _ _ _ _ _ _| | | |
. | _| |_ _| |_ _| |_ _| |_ |
. _ _| | |_ _ _ _| | | |_ _ _ _| | |_ _
. | _| |_ _| |_ _| |_ _| |_ _| |_ |
. | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
. | |_ _| | | |_ _| |
. |_ _ _ _| |_ _ _ _|
.
After 10 generations there are 273 ON cells, so a(10) = 273.
(End)
MAPLE
read("transforms") ; isA000079 := proc(n) if type(n, 'even') then nops(numtheory[factorset](n)) = 1 ; else false ; fi ; end proc:
A048883 := proc(n) 3^wt(n) ; end proc:
A161415 := proc(n) if n = 1 then 1; elif isA000079(n) then 4*A048883(n-1)-2*n ; else 4*A048883(n-1) ; end if; end proc:
A160414 := proc(n) add( A161415(k), k=1..n) ; end proc: seq(A160414(n), n=0..90) ; # R. J. Mathar, Oct 16 2010
MATHEMATICA
A160414list[nmax_]:=Accumulate[Table[If[n<2, n, 4*3^DigitCount[n-1, 2, 1]-If[IntegerQ[Log2[n]], 2n, 0]], {n, 0, nmax}]]; A160414list[100] (* Paolo Xausa, Sep 01 2023, after R. J. Mathar *)
PROG
(PARI) my(s=-1, t(n)=3^norml2(binary(n-1))-if(n==(1<<valuation(n, 2)), n\2)); vector(99, i, 4*(s+=t(i))+1) \\ Altug Alkan, Sep 25 2015
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, May 20 2009
EXTENSIONS
Edited by N. J. A. Sloane, Jun 15 2009 and Jul 13 2009
More terms from R. J. Mathar, Oct 16 2010
STATUS
approved

Search completed in 0.051 seconds