Displaying 11-20 of 113 results found.
page
1
2
3
4
5
6
7
8
9
10
11
12
Probably an incomplete version of A001235.
+20
0
1729, 4104, 148941, 160284, 171288, 1331064
Taxi-cab numbers ( A001235) n such that n+1 is the sum of two positive cubes ( A003325).
+20
0
18426689288, 20689194392, 166940780112, 3956149616328, 53611112714103, 562576374032408, 11110701930362937, 17146742033697471, 24658089729767487, 45512714439607464
COMMENTS
Numbers n such that n+1 and n can be written, respectively, in at least one and two ways as the sum of two positive cubes.
EXAMPLE
a(1) = 2514^3 + 1364^3 = 2498^3 + 1416^3, a(1)+1 = 2641^3 + 182^3.
a(2) = 2492^3 + 1734^3 = 2726^3 + 756^3, a(2)+1 = 2282^3 + 2065^3.
Numbers n such that n*(n+1)/2 is a Taxi-cab number ( A001235).
+20
0
349999, 591408, 405332018, 525796270
COMMENTS
In other words, numbers n such that 0 + 1 + 2 + ... + n = a^3 + b^3 = c^3 + d^3 where (a, b) and (c, d) are distinct pairs and a, b, c, d > 0 is soluble.
It is known that there is no triangular number that is also a cube except 0 and 1. So if the sum of k positive cubes is a triangular number that is bigger than 1, then the minimum value of k is 2. At this point sequence focuses on that question: What are the triangular numbers that are the sum of two positive cubes in more than one way?
A000217(349999) = 61249825000 is the least triangular number that is also a Taxi-cab number.
EXAMPLE
349999 is a term because 349999*(349999+1) / 2 = 61249825000 = 820^3 + 3930^3 = 3018^3 + 3232^3.
591408 is a term because 591408*(591408+1) / 2 = 174882006936 = 2070^3 + 5496^3 = 3238^3 + 5204^3.
Taxi-cab numbers ( A001235) that are of the form x^2 + y^4 in more than one way (x, y > 0).
+20
0
27445392, 1644443281, 2367885312, 5687433577, 112416325632, 208265121792, 900069054976, 1976398601697, 6735639678976, 9698858237952, 9911785815477, 14585606569872, 15283760730112, 18156501172017, 23295727931392, 29871321586561, 33510832422912, 67250060669952
COMMENTS
A272701(3) = 27445392 is the least number with the property that sequence focuses on.
If n = a^3 + b^3 = c^3 + d^3 = x^2 + y^4 = z^2 + t^4, then n*k^12 = (a*k^4)^3 + (b*k^4)^3 = (c*k^4)^3 + (d*k^4)^3 = (x*k^6)^2 + (y*k^3)^4 = (z*k^6)^2 + (t*k^3)^4. So if n is this sequence, then n*k^12 is also in this sequence for all k > 1.
EXAMPLE
27445392 is a term because 27445392 = 141^3 + 291^3 = 198^3 + 270^3 = 756^2 + 72^4 = 5076^2 + 36^4.
112416325632 is a term because 112416325632 = 27445392*2^12.
Numbers that are the sum of 2 positive cubes.
+10
136
2, 9, 16, 28, 35, 54, 65, 72, 91, 126, 128, 133, 152, 189, 217, 224, 243, 250, 280, 341, 344, 351, 370, 407, 432, 468, 513, 520, 539, 559, 576, 637, 686, 728, 730, 737, 756, 793, 854, 855, 945, 1001, 1008, 1024, 1027, 1064, 1072, 1125, 1216, 1241, 1332, 1339, 1343
COMMENTS
It is conjectured that this sequence and A052276 have infinitely many numbers in common, although only one example (128) is known. [Any further examples are greater than 5 million. - Charles R Greathouse IV, Apr 12 2020] [Any further example is greater than 10^12. - M. F. Hasler, Jan 10 2021]
(i) N and N+1 are both the sum of two positive cubes if N=2*(2*n^2 + 4*n + 1)*(4*n^4 + 16*n^3 + 23*n^2 + 14*n + 4), n=1,2,....
(ii) For n >= 2, let N = 16*n^6 - 12*n^4 + 6*n^2 - 2, so N+1 = 16*n^6 - 12*n^4 + 6*n^2 - 1.
Then the identities 16*n^6 - 12*n^4 + 6*n^2 - 2 = (2*n^2 - n - 1)^3 + (2*n^2 + n - 1)^3 16*n^6 - 12*n^4 + 6*n^2 - 1 = (2*n^2)^3 + (2*n^2 - 1)^3 show that N, N+1 are in the sequence. (End)
If n is a term then n*m^3 (m >= 2) is also a term, e.g., 2m^3, 9m^3, 28m^3, and 35m^3 are all terms of the sequence. "Primitive" terms (not of the form n*m^3 with n = some previous term of the sequence and m >= 2) are 2, 9, 28, 35, 65, 91, 126, etc. - Zak Seidov, Oct 12 2011
This is an infinite sequence in which the first term is prime but thereafter all terms are composite. - Ant King, May 09 2013
By Fermat's Last Theorem (the special case for exponent 3, proved by Euler, is sufficient), this sequence contains no cubes. - Charles R Greathouse IV, Apr 03 2021
REFERENCES
C. G. J. Jacobi, Gesammelte Werke, vol. 6, 1969, Chelsea, NY, p. 354.
LINKS
Nils Bruin, On powers as sums of two cubes, in Algorithmic number theory (Leiden, 2000), 169-184, Lecture Notes in Comput. Sci., 1838, Springer, Berlin, 2000.
MATHEMATICA
nn = 2*20^3; Union[Flatten[Table[x^3 + y^3, {x, nn^(1/3)}, {y, x, (nn - x^3)^(1/3)}]]] (* T. D. Noe, Oct 12 2011 *)
With[{upto=2000}, Select[Total/@Tuples[Range[Ceiling[Surd[upto, 3]]]^3, 2], #<=upto&]]//Union (* Harvey P. Dale, Jun 11 2016 *)
PROG
(PARI) cubes=sum(n=1, 11, x^(n^3), O(x^1400)); v = select(x->x, Vec(cubes^2), 1); vector(#v, k, v[k]+1) \\ edited by Michel Marcus, May 08 2017
(PARI) isA003325(n) = for(k=1, sqrtnint(n\2, 3), ispower(n-k^3, 3) && return(1)) \\ M. F. Hasler, Oct 17 2008, improved upon suggestion of Altug Alkan and Michel Marcus, Feb 16 2016
(PARI) T=thueinit('z^3+1); is(n)=#select(v->min(v[1], v[2])>0, thue(T, n))>0 \\ Charles R Greathouse IV, Nov 29 2014
(PARI) list(lim)=my(v=List()); lim\=1; for(x=1, sqrtnint(lim-1, 3), my(x3=x^3); for(y=1, min(sqrtnint(lim-x3, 3), x), listput(v, x3+y^3))); Set(v) \\ Charles R Greathouse IV, Jan 11 2022
(Haskell)
a003325 n = a003325_list !! (n-1)
a003325_list = filter c2 [1..] where
c2 x = any (== 1) $ map (a010057 . fromInteger) $
takeWhile (> 0) $ map (x -) $ tail a000578_list
(Python)
from sympy import integer_nthroot
def aupto(lim):
cubes = [i*i*i for i in range(1, integer_nthroot(lim-1, 3)[0] + 1)]
sum_cubes = sorted([a+b for i, a in enumerate(cubes) for b in cubes[i:]])
return [s for s in sum_cubes if s <= lim]
EXTENSIONS
Error in formula line corrected by Zak Seidov, Jul 23 2009
Taxicab, taxi-cab or Hardy-Ramanujan numbers: the smallest number that is the sum of 2 positive integral cubes in n ways.
+10
55
2, 1729, 87539319, 6963472309248, 48988659276962496, 24153319581254312065344
COMMENTS
The sequence is infinite: Fermat proved that numbers expressible as a sum of two positive integral cubes in n different ways exist for any n. Hardy and Wright give a proof in Theorem 412 of An Introduction of Theory of Numbers, pp. 333-334 (fifth edition), pp. 442-443 (sixth edition).
A001235 gives another definition of "taxicab numbers".
David W. Wilson reports a(6) <= 8230545258248091551205888. [But see next line!]
C. S. Calude, E. Calude and M. J. Dinneen, What is the value of Taxicab(6)?, 2003, show that with high probability, a(6) = 24153319581254312065344.
When negative cubes are allowed, such terms are called "Cabtaxi" numbers, cf. Boyer's web page, Wikipedia or MathWorld. - M. F. Hasler, Feb 05 2013
a(8) <= 50974398750539071400590819921724352 = 58360453256^3 + 370298338396^3 = 7467391974^3 + 370779904362^3 = 39304147071^3 + 370633638081^3 = 109276817387^3 + 367589585749^3 = 208029158236^3 + 347524579016^3 = 224376246192^3 + 341075727804^3 = 234604829494^3 + 336379942682^3 = 288873662876^3 + 299512063576^3. - PoChi Su, May 16 2013
a(9) <= 136897813798023990395783317207361432493888. - PoChi Su, May 17 2013
The preceding bounds are not the best that are presently known.
An upper bound for a(22) was given by C. Boyer (see the C. Boyer link), namely
BTa(22)= 2^12 *3^9 * 5^9 *7^4 *11^3 *13^6 *17^3 *19^3 *31^4 *37^4 *43 *61^3 *73 *79^3 *97^3 *103^3 *109^3 *127^3 *139^3 *157 *181^3 *197^3 *397^3 *457^3 *503^3 *521^3 *607^3 *4261^3.
We also know that (97*491)^3*BTa(22) is an upper bound on a(23), corresponding to the sum x^3+y^3 with
x=2^5 *3^4 *5^3 *7 *11 *13^2 *17 *19^2 *31 *37 *61 *79 *103 *109 *127 *139 *181 *197 *397 *457 *503 *521 *607 *4261 *11836681,
y=2^4 *3^3 *5^3 *7 *11 *13^2 *17 *19 *31 *37 *61 *79 *89 *103 *109 *127 *139 *181 *197 *397 * 457 *503 * 521 *607 *4261 *81929041.
(End)
Conjecture: the number of distinct prime factors of a(n) is strictly increasing as n grows (this is not true if a(7) is equal to the upper bound given above), but never exceeds 2*n. - Sergey Pavlov, Mar 01 2017
REFERENCES
C. Boyer, "Les nombres Taxicabs", in Dossier Pour La Science, pp. 26-28, Volume 59 (Jeux math') April/June 2008 Paris.
R. K. Guy, Unsolved Problems in Number Theory, D1.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, pp. 333-334 (fifth edition), pp. 442-443 (sixth edition), see Theorem 412.
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 165 and 189.
LINKS
D. W. Wilson, Taxicab Numbers (last snapshot available on web.archive.org, as of June 2013).
FORMULA
a(n) > 113*n^3 for n > 1 (a trivial bound based on the number of available cubes; 113 < (1 - 2^(-1/3))^(-3)). - Charles R Greathouse IV, Jun 18 2024
EXAMPLE
Values of {b,c}, a(n) = b^3 + c^3:
n = 1: {1,1}
n = 2: {1, 12}, {9, 10}
n = 3: {167, 436}, {228, 423}, {255, 414}
n = 4: {2421, 19083}, {5436, 18948}, {10200, 18072}, {13322, 16630}
n = 5: {38787, 365757}, {107839, 362753}, {205292, 342952}, {221424, 336588}, {231518, 331954}
n = 6: {582162, 28906206}, {3064173, 28894803}, {8519281, 28657487}, {16218068, 27093208}, {17492496, 26590452}, {18289922, 26224366}. (End)
Primary Carmichael numbers.
+10
25
1729, 2821, 29341, 46657, 252601, 294409, 399001, 488881, 512461, 1152271, 1193221, 1857241, 3828001, 4335241, 5968873, 6189121, 6733693, 6868261, 7519441, 10024561, 10267951, 10606681, 14469841, 14676481, 15247621, 15829633, 17098369, 17236801, 17316001, 19384289, 23382529, 29111881, 31405501, 34657141, 35703361, 37964809
COMMENTS
Squarefree integers m > 1 such that if prime p divides m, then the sum of the base-p digits of m equals p. It follows that m is then a Carmichael number ( A002997).
Dickson's conjecture implies that the sequence is infinite, see Kellner 2019.
If m is a term and p is a prime factor of m, then p <= a*sqrt(m) with a = sqrt(66337/132673) = 0.7071..., where the bound is sharp.
The distribution of primary Carmichael numbers is A324317.
See Kellner and Sondow 2019 and Kellner 2019.
Primary Carmichael numbers are special polygonal numbers A324973. The rank of the n-th primary Carmichael number is A324976(n). See Kellner and Sondow 2019. - Jonathan Sondow, Mar 26 2019
The first term is the Hardy-Ramanujan number. - Omar E. Pol, Jan 09 2020
FORMULA
a_1 + a_2 + ... + a_k = p if p is prime and m = a_1 * p + a_2 * p^2 + ... + a_k * p^k with 0 <= a_i <= p-1 for i = 1, 2, ..., k (note that a_0 = 0).
EXAMPLE
1729 = 7 * 13 * 19 is squarefree, and 1729 in base 7 is 5020_7 = 5 * 7^3 + 0 * 7^2 + 2 * 7 + 0 with 5+0+2+0 = 7, and 1729 in base 13 is a30_13 with a+3+0 = 10+3+0 = 13, and 1729 in base 19 is 4f0_19 with 4+f+0 = 4+15+0 = 19, so 1729 is a member.
MATHEMATICA
SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
LP[n_] := Transpose[FactorInteger[n]][[1]];
TestCP[n_] := (n > 1) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] == # &];
Select[Range[1, 10^7, 2], TestCP[#] &]
PROG
(Perl) use ntheory ":all"; my $m; forsquarefree { $m=$_; say if @_ > 2 && is_carmichael($m) && vecall { $_ == vecsum(todigits($m, $_)) } @_; } 1e7; # Dana Jacobsen, Mar 28 2019
(Python)
from sympy import factorint
from sympy.ntheory import digits
def ok(n):
pf = factorint(n)
if n < 2 or max(pf.values()) > 1: return False
return all(sum(digits(n, p)[1:]) == p for p in pf)
CROSSREFS
Least primary Carmichael number with n prime factors is A306657.
Cf. also A005117, A195441, A324317, A324318, A324319, A324320, A324369, A324370, A324371, A324404, A324405, A324973, A324976, A001235.
Consider the Diophantine equation x^3 + y^3 = z^3 + 1 (1 < x < y < z) or 'Fermat near misses'. Sequence gives values of z in monotonic increasing order.
+10
20
12, 103, 150, 249, 495, 738, 1544, 1852, 1988, 2316, 4184, 5262, 5640, 8657, 9791, 9953, 11682, 14258, 21279, 21630, 31615, 36620, 36888, 38599, 38823, 40362, 41485, 47584, 57978, 59076, 63086, 73967, 79273, 83711, 83802, 86166, 90030
COMMENTS
Numbers n such that n^3+1 is expressible as the sum of two nonzero cubes (both greater than 1).
Values of z associated with A050794.
Sequence is infinite. One subsequence is (from x = 1 + 9 m^3, y = 9 m^4, z = 3*m*(3*m^3 + 1), x^3 + y^3 = z^3 + 1): z(m) = 3*m*(3*m^3 + 1) = {12, 150, 738, 2316, 5640, 11682, 21630, 36888, 59076, 90030, ...} = a (1, 3, 6, 10, 13, 17, 20, 23, 30, 37, ...). - Zak Seidov, Sep 16 2013
REFERENCES
Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.
EXAMPLE
12 is a term because 10^3 + 9^3 = 12^3 + 1 (= 1729).
2316 is in the sequence because 577^3 + 2304^3 = 2316^3 + 1.
MATHEMATICA
r[z_] := Reduce[ 1 < x < y < z && x^3 + y^3 == z^3 + 1, {x, y}, Integers]; z = 4; A050791 = {}; While[z < 10^4, If[r[z] =!= False, Print[z]; AppendTo[ A050791, z]]; z++]; A050791 (* Jean-François Alcover, Dec 27 2011 *)
PROG
(PARI) is(n)=if(n<2, return(0)); my(c3=n^3); for(a=2, sqrtnint(c3-5, 3), if(ispower(c3-1-a^3, 3), return(1))); 0 \\ Charles R Greathouse IV, Oct 26 2014
(PARI) T=thueinit('x^3+1); is(n)=n>8&&#select(v->min(v[1], v[2])>1, thue(T, n^3+1))>0 \\ Charles R Greathouse IV, Oct 26 2014
Cubefree taxi-cab numbers.
+10
20
1729, 20683, 40033, 149389, 195841, 327763, 443889, 684019, 704977, 1845649, 2048391, 2418271, 2691451, 3242197, 3375001, 4342914, 4931101, 5318677, 5772403, 5799339, 6058747, 7620661, 8872487, 9443761, 10702783, 10765603, 13623913, 16387189, 16776487, 16983854, 17045567, 18406603
COMMENTS
Taxi-cab numbers ( A001235) that are not divisible by any cube > 1.
Cubeful taxi-cab numbers are 4104, 13832, 32832, 39312, 46683, 64232, 65728, 110656, 110808, 134379, 165464, 171288, ...
EXAMPLE
195841 is a term because 195841 is a member of A001235 and 195841 = 37*67*79.
Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton (same as A160410, but a(1) = 1, not 4).
+10
19
0, 1, 9, 21, 49, 61, 97, 133, 225, 237, 273, 309, 417, 453, 561, 669, 961, 973, 1009, 1045, 1153, 1189, 1297, 1405, 1729, 1765, 1873, 1981, 2305, 2413, 2737, 3061, 3969, 3981, 4017, 4053, 4161, 4197, 4305, 4413, 4737, 4773, 4881, 4989, 5313, 5421, 5745
COMMENTS
The structure has a fractal behavior similar to the toothpick sequence A139250.
First differences: A161415, where there is an explicit formula for the n-th term.
For the illustration of a(24) = 1729 (the Hardy-Ramanujan number) see the Links section.
EXAMPLE
With the positive terms written as an irregular triangle in which the row lengths are the terms of A011782 the sequence begins:
1;
9;
21, 49;
61, 97, 133, 225;
237, 273, 309, 417, 453, 561, 669, 961;
...
This triangle T(n,k) shares with the triangle A256530 the terms of the column k, if k is a power of 2, for example both triangles share the following terms: 1, 9, 21, 49, 61, 97, 225, 237, 273, 417, 961, etc.
.
Illustration of initial terms, for n = 1..10:
. _ _ _ _ _ _ _ _
. | _ _ | | _ _ |
. | | _|_|_ _ _ _ _ _ _ _ _ _ _|_|_ | |
. | |_| _ _ _ _ _ _ _ _ |_| |
. |_ _| | _|_ _|_ | | _|_ _|_ | |_ _|
. | |_| _ _ |_| |_| _ _ |_| |
. | | | _|_|_ _ _|_|_ | | |
. | _| |_| _ _ _ _ |_| |_ |
. | | |_ _| | _|_|_ | |_ _| | |
. | |_ _| | |_| _ |_| | |_ _| |
. | _ _ | _| |_| |_ | _ _ |
. | | _|_| | |_ _ _| | |_|_ | |
. | |_| _| |_ _| |_ _| |_ |_| |
. | | | |_ _ _ _ _ _ _| | | |
. | _| |_ _| |_ _| |_ _| |_ |
. _ _| | |_ _ _ _| | | |_ _ _ _| | |_ _
. | _| |_ _| |_ _| |_ _| |_ _| |_ |
. | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
. | |_ _| | | |_ _| |
. |_ _ _ _| |_ _ _ _|
.
After 10 generations there are 273 ON cells, so a(10) = 273.
(End)
MAPLE
read("transforms") ; isA000079 := proc(n) if type(n, 'even') then nops(numtheory[factorset](n)) = 1 ; else false ; fi ; end proc:
A048883 := proc(n) 3^wt(n) ; end proc:
A161415 := proc(n) if n = 1 then 1; elif isA000079(n) then 4* A048883(n-1)-2*n ; else 4* A048883(n-1) ; end if; end proc:
MATHEMATICA
A160414list[nmax_]:=Accumulate[Table[If[n<2, n, 4*3^DigitCount[n-1, 2, 1]-If[IntegerQ[Log2[n]], 2n, 0]], {n, 0, nmax}]]; A160414list[100] (* Paolo Xausa, Sep 01 2023, after R. J. Mathar *)
PROG
(PARI) my(s=-1, t(n)=3^norml2(binary(n-1))-if(n==(1<<valuation(n, 2)), n\2)); vector(99, i, 4*(s+=t(i))+1) \\ Altug Alkan, Sep 25 2015
CROSSREFS
Cf. A001235, A011541, A011782, A000225, A060867, A139250, A147562, A160117, A160118, A160410, A160412, A161415, A160720, A160727, A151725, A256530, A256534.
Search completed in 0.051 seconds
|