# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a352756 Showing 1-1 of 1 %I A352756 #37 Jul 19 2022 11:51:23 %S A352756 3,46,197,528,1111,2018,3321,5092,7403,10326,13933,18296,23487,29578, %T A352756 36641,44748,53971,64382,76053,89056,103463,119346,136777,155828, %U A352756 176571,199078,223421,249672,277903,308186,340593,375196,412067,451278,492901,537008,583671,632962,684953,739716,797323,857846,921357 %N A352756 Positive numbers k such that the centered cube number k^3 + (k+1)^3 is equal to the difference of two positive cubes and to A352755(n). %C A352756 Numbers B > 0 such that the centered cube number B^3 + (B+1)^3 is equal to the difference of two positive cubes, i.e., A = B^3 + (B+1)^3 = C^3 - D^3 and such that C - D = 2n - 1, with C > D > B > 0, and A > 0, A = t*(3*t^2 + 4)*(t^2*(3*t^2 + 4)^2 + 3)/4 with t = 2*n-1, and where A = A352755(n), B = a(n) (this sequence), C = A352757(n) and D = A352758(n). %C A352756 There are infinitely many such numbers a(n) = B in this sequence. %C A352756 Subsequence of A352134 and of A352221. %H A352756 Vladimir Pletser, Table of n, a(n) for n = 1..10000 %H A352756 A. Grinstein, Ramanujan and 1729, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998. %H A352756 Vladimir Pletser, Euler's and the Taxi-Cab relations and other numbers that can be written twice as sums of two cubed integers, submitted. Preprint available on ResearchGate, 2022. %H A352756 Eric Weisstein's World of Mathematics, Centered Cube Number %H A352756 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). %F A352756 a(n)^3 + (a(n)+1)^3 = A352757(n)^3 - A352758(n)^3 and A352757(n) - A352758(n) = 2*n - 1. %F A352756 a(n) = ((2*n - 1)*(3*(2*n - 1)^2 + 4) - 1)/2. %F A352756 For n > 3, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 72, with a(1) = 3, a(2) = 46 and a(3) = 197. %F A352756 a(n) can be extended for negative n such that a(-n) = -a(n+1) - 1. %F A352756 G.f.: x*(3 + 34*x + 31*x^2 + 4*x^3)/(1 - x)^4. - _Stefano Spezia_, Apr 08 2022 %e A352756 a(1) = 3 is a term because 3^3 + 4^3 = 6^3 - 5^3 and 6 - 5 = 1 = 2*1 - 1. %e A352756 a(2) = 46 is a term because 46^3 + 47^3 = 151^3 - 148^3 and 151 - 148 = 3 = 2*2 - 1. %e A352756 a(3) = ((2*3 - 1)*(3*(2*3 - 1)^2 + 4) - 1)/2 = 197. %e A352756 a(4) = 3*197 - 3*46 + 3 + 72 = 528. %p A352756 restart; for n to 20 do (1/2)* ((2*n - 1)*(3*(2*n - 1)^2 + 4) - 1); end do; %Y A352756 Cf. A005898, A001235, A272885, A352133, A352134, A352135, A352136, A352220, A352222, A352223, A352224, A352225, A352755, A352757, A352758, A352759, A352760, A352761, A352762. %K A352756 nonn,easy %O A352756 1,1 %A A352756 _Vladimir Pletser_, Apr 02 2022 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE