[go: up one dir, main page]

login
Search: a023050 -id:a023050
     Sort: relevance | references | number | modified | created      Format: long | short | data
Taxi-cab numbers: sums of 2 cubes in more than 1 way.
+10
114
1729, 4104, 13832, 20683, 32832, 39312, 40033, 46683, 64232, 65728, 110656, 110808, 134379, 149389, 165464, 171288, 195841, 216027, 216125, 262656, 314496, 320264, 327763, 373464, 402597, 439101, 443889, 513000, 513856, 515375, 525824, 558441, 593047, 684019, 704977
OFFSET
1,1
COMMENTS
From Wikipedia: "1729 is known as the Hardy-Ramanujan number after a famous anecdote of the British mathematician G. H. Hardy regarding a hospital visit to the Indian mathematician Srinivasa Ramanujan. In Hardy's words: 'I remember once going to see him when he was ill at Putney. I had ridden in taxi cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavorable omen. "No," he replied, "it is a very interesting number; it is the smallest number expressible as the sum of two cubes in two different ways."'"
A011541 gives another version of "taxicab numbers".
If n is in this sequence, then n*k^3 is also in this sequence for all k > 0. So this sequence is obviously infinite. - Altug Alkan, May 09 2016
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, Section D1.
G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940, p. 12.
Ya. I. Perelman, Algebra can be fun, pp. 142-143.
H. W. Richmond, On integers which satisfy the equation t^3 +- x^3 +- y^3 +- z^3, Trans. Camb. Phil. Soc., 22 (1920), 389-403, see p. 402.
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 165.
LINKS
Shahar Amitai, Table of n, a(n) for n = 1..30000 (terms a(1)-a(4724) from T. D. Noe, terms a(4725)-a(10000) from Zak Seidov).
J. Charles-É, Recreomath, Ramanujan's Number.
A. Grinstein, Ramanujan and 1729, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998.
Henk Koppelaar, Peyman Nasehpour, and Maarten Looijen, Symmetry between Series if Entangled by Sums, Preprints.org, 2024.
Istanbul Bilgi University, Ramanujan and Hardy's Taxi
Christopher Lane, The First ten Ta(2) and their double distinct cubic sums representations, Find Ramanujan's Taxi Number using JavaScript. [WayBack Machine copy]
J. Leech, Some solutions of Diophantine equations, Proc. Camb. Phil. Soc., 53 (1957), 778-780.
Ken Ono and Sarah Trebat-Leder, The 1729 K3 surface, arXiv:1510.00735 [math.NT], 2015.
Eric Weisstein's World of Mathematics, Cubic Number
Eric Weisstein's World of Mathematics, Diophantine Equation 3rd Powers
Eric Weisstein's World of Mathematics, Taxicab Number
D. W. Wilson, The Fifth Taxicab Number is 48988659276962496, J. Integer Sequences, Vol. 2, 1999, #99.1.9.
EXAMPLE
4104 belongs to the sequence as 4104 = 2^3 + 16^3 = 9^3 + 15^3.
MATHEMATICA
Select[Range[750000], Length[PowersRepresentations[#, 2, 3]]>1&] (* Harvey P. Dale, Nov 25 2014, with correction by Zak Seidov, Jul 13 2015 *)
PROG
(PARI) is(n)=my(t); for(k=ceil((n/2)^(1/3)), (n-.4)^(1/3), if(ispower(n-k^3, 3), if(t, return(1), t=1))); 0 \\ Charles R Greathouse IV, Jul 15 2011
(PARI) T=thueinit(x^3+1, 1);
is(n)=my(v=thue(T, n)); sum(i=1, #v, v[i][1]>=0 && v[i][2]>=v[i][1])>1 \\ Charles R Greathouse IV, May 09 2016
CROSSREFS
Subsequence of A003325.
Cf. A007692, A008917, A011541, A018786, A018850 (primitive solutions), A051347 (allows negatives), A343708, A360619.
Solutions in greater numbers of ways:
(>2): A018787 (A003825 for primitive, A023050 for coprime),
(>3): A023051 (A003826 for primitive),
(>4): A051167 (A155057 for primitive).
KEYWORD
nonn,nice
STATUS
approved
Taxicab, taxi-cab or Hardy-Ramanujan numbers: the smallest number that is the sum of 2 positive integral cubes in n ways.
+10
55
2, 1729, 87539319, 6963472309248, 48988659276962496, 24153319581254312065344
OFFSET
1,1
COMMENTS
The sequence is infinite: Fermat proved that numbers expressible as a sum of two positive integral cubes in n different ways exist for any n. Hardy and Wright give a proof in Theorem 412 of An Introduction of Theory of Numbers, pp. 333-334 (fifth edition), pp. 442-443 (sixth edition).
A001235 gives another definition of "taxicab numbers".
David W. Wilson reports a(6) <= 8230545258248091551205888. [But see next line!]
Randall L Rathbun has shown that a(6) <= 24153319581254312065344.
C. S. Calude, E. Calude and M. J. Dinneen, What is the value of Taxicab(6)?, 2003, show that with high probability, a(6) = 24153319581254312065344.
When negative cubes are allowed, such terms are called "Cabtaxi" numbers, cf. Boyer's web page, Wikipedia or MathWorld. - M. F. Hasler, Feb 05 2013
a(7) <= 24885189317885898975235988544. - Robert G. Wilson v, Nov 18 2012
a(8) <= 50974398750539071400590819921724352 = 58360453256^3 + 370298338396^3 = 7467391974^3 + 370779904362^3 = 39304147071^3 + 370633638081^3 = 109276817387^3 + 367589585749^3 = 208029158236^3 + 347524579016^3 = 224376246192^3 + 341075727804^3 = 234604829494^3 + 336379942682^3 = 288873662876^3 + 299512063576^3. - PoChi Su, May 16 2013
a(9) <= 136897813798023990395783317207361432493888. - PoChi Su, May 17 2013
From PoChi Su, Oct 09 2014: (Start)
The preceding bounds are not the best that are presently known.
An upper bound for a(22) was given by C. Boyer (see the C. Boyer link), namely
BTa(22)= 2^12 *3^9 * 5^9 *7^4 *11^3 *13^6 *17^3 *19^3 *31^4 *37^4 *43 *61^3 *73 *79^3 *97^3 *103^3 *109^3 *127^3 *139^3 *157 *181^3 *197^3 *397^3 *457^3 *503^3 *521^3 *607^3 *4261^3.
We also know that (97*491)^3*BTa(22) is an upper bound on a(23), corresponding to the sum x^3+y^3 with
x=2^5 *3^4 *5^3 *7 *11 *13^2 *17 *19^2 *31 *37 *61 *79 *103 *109 *127 *139 *181 *197 *397 *457 *503 *521 *607 *4261 *11836681,
y=2^4 *3^3 *5^3 *7 *11 *13^2 *17 *19 *31 *37 *61 *79 *89 *103 *109 *127 *139 *181 *197 *397 * 457 *503 * 521 *607 *4261 *81929041.
(End)
Conjecture: the number of distinct prime factors of a(n) is strictly increasing as n grows (this is not true if a(7) is equal to the upper bound given above), but never exceeds 2*n. - Sergey Pavlov, Mar 01 2017
REFERENCES
C. Boyer, "Les nombres Taxicabs", in Dossier Pour La Science, pp. 26-28, Volume 59 (Jeux math') April/June 2008 Paris.
R. K. Guy, Unsolved Problems in Number Theory, D1.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, pp. 333-334 (fifth edition), pp. 442-443 (sixth edition), see Theorem 412.
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 165 and 189.
LINKS
C. Boyer, New upper bounds for Taxicab and Cabtaxi numbers, JIS 11 (2008) 08.1.6.
C. S. & E. Calude and M. T. Dinneen, What is the value of Taxicab(6)?
C. S. Calude, E. Calude and M. J. Dinneen, What is the value of Taxicab(6)?, J. Universal Computer Science, 9 (2003), 1196-1203.
U. Hollerbach, The sixth taxicab number is 24153319581254312065344, posting to the NMBRTHRY mailing list, Mar 09 2008.
Bernd C. Kellner, On primary Carmichael numbers, Integers 22 (2022), Article #A38, 39 pp.; arXiv:1902.11283 [math.NT], 2019.
D. McKee, Taxicab numbers, Apr 24 2001.
J. C. Meyrignac, The Taxicab Problem
Ken Ono and Sarah Trebat-Leder, The 1729 K3 surface, arXiv:1510.00735 [math.NT], 2015.
I. Peterson, Math Trek, Taxicab Numbers
Randall L. Rathbun, Sixth Taxicab Number?, posting to the NMBRTHRY mailing list, Jul 16 2002.
W. Schneider, Taxicab Numbers
J. Silverman, Taxicabs and Sums of Two Cubes, American Mathematical Monthly, Volume 100, Issue 4 (Apr., 1993), 331-340.
Po-Chi Su, More Upper Bounds on Taxicab and Cabtaxi Numbers, Journal of Integer Sequences, 19 (2016), #16.4.3.
Eric Weisstein's World of Mathematics, Cubic Number
Eric Weisstein's World of Mathematics, Taxicab Number
Wikipedia, Taxicab number
D. W. Wilson, The Fifth Taxicab Number is 48988659276962496, J. Integer Sequences, Vol. 2, 1999, #99.1.9.
D. W. Wilson, Taxicab Numbers (last snapshot available on web.archive.org, as of June 2013).
FORMULA
a(n) <= A080642(n) for n > 0, with equality for n = 1, 2 (only?). - Jonathan Sondow, Oct 25 2013
a(n) > 113*n^3 for n > 1 (a trivial bound based on the number of available cubes; 113 < (1 - 2^(-1/3))^(-3)). - Charles R Greathouse IV, Jun 18 2024
EXAMPLE
From Zak Seidov, Mar 22 2013: (Start)
Values of {b,c}, a(n) = b^3 + c^3:
n = 1: {1,1}
n = 2: {1, 12}, {9, 10}
n = 3: {167, 436}, {228, 423}, {255, 414}
n = 4: {2421, 19083}, {5436, 18948}, {10200, 18072}, {13322, 16630}
n = 5: {38787, 365757}, {107839, 362753}, {205292, 342952}, {221424, 336588}, {231518, 331954}
n = 6: {582162, 28906206}, {3064173, 28894803}, {8519281, 28657487}, {16218068, 27093208}, {17492496, 26590452}, {18289922, 26224366}. (End)
CROSSREFS
Cf. A001235, A003826, A023050, A047696, A080642 (cubefree taxicab numbers).
KEYWORD
nonn,nice,hard,more
EXTENSIONS
Added a(6), confirmed by Uwe Hollerbach, communicated by Christian Schroeder, Mar 09 2008
STATUS
approved
Numbers that are the sum of two positive cubes in at least four ways (all solutions).
+10
9
6963472309248, 12625136269928, 21131226514944, 26059452841000, 55707778473984, 74213505639000, 95773976104625, 101001090159424, 159380205560856, 169049812119552, 174396242861568, 188013752349696
OFFSET
1,1
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, D1.
LINKS
Uwe Hollerbach, Taxi, Taxi! [Original link, broken]
Uwe Hollerbach, Taxi, Taxi! [Replacement link to Wayback Machine]
Uwe Hollerbach, Taxi! Taxi! [Cached copy from Wayback Machine, html version of top page only]
D. W. Wilson, The Fifth Taxicab Number is 48988659276962496, J. Integer Sequences, Vol. 2, 1999, #99.1.9.
KEYWORD
nonn
AUTHOR
David W. Wilson (revised Oct 15 1997)
EXTENSIONS
b-file extended by Ray Chandler, Jan 19 2009
STATUS
approved
Numbers that are the sum of two cubes in at least four ways (primitive solutions).
+10
6
6963472309248, 12625136269928, 21131226514944, 26059452841000, 74213505639000, 95773976104625, 159380205560856, 174396242861568, 300656502205416, 376890885439488, 521932420691227, 573880096718136
OFFSET
1,1
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, D1.
LINKS
Uwe Hollerbach, Taxi, Taxi! [Original link, broken]; see also Archive.org backup and local cache [top page only]
E. Rosenstiel et al., The Four Least Solutions ..., Instit. of Mathem. and Its Applic. Bull. Jul 27 (pp. 155-157) 1991
Eric Weisstein's World of Mathematics, Cubic Number
Eric Weisstein's World of Mathematics, Diophantine Equation--3rd Powers
David W. Wilson, The Fifth Taxicab Number is 48988659276962496, J. Integer Sequences, Vol. 2, 1999, #99.1.9.
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from David W. Wilson, Oct 15 1997
b-file extended by Ray Chandler, Jan 19 2009
STATUS
approved
Sum of two (possibly negative) coprime cubes in at least 3 ways, but not the sum of 2 noncoprime cubes.
+10
4
3367, 68913, 152551, 195841, 625177, 684019, 1147627, 1548729, 2113921, 2628073, 2985983, 3242197, 3442887, 4488211, 4663295, 4931101, 5318677, 7194889, 8741691, 9667693, 14110579, 15072967, 15438185, 16776487, 21463407, 22910797, 24769502, 26122131, 26460217
OFFSET
1,1
COMMENTS
Not every term is cubefree; some are sb^3 where s is in A159843 and b > 1.
LINKS
EXAMPLE
21463407 = 271^3 + 116^3 = 284^3 - 113^3 = 368^3 - 305^3, and 271 & 116 are coprime, etc., so 21463407 is in the sequence.
CROSSREFS
Cf. A023050 (positive cubes); A293650 (allows noncoprime); A293646, A293648
KEYWORD
nonn
AUTHOR
Rosalie Fay, Oct 16 2017
STATUS
approved
Sum of two coprime positive cubes in at least 2 ways, but not the sum of 2 non-coprime positive cubes.
+10
2
1729, 20683, 40033, 149389, 195841, 327763, 443889, 684019, 704977, 1845649, 2048391, 2418271, 2691451, 3242197, 3375001, 4342914, 4931101, 5318677, 5772403, 5799339, 6058747, 7620661, 8872487, 9443761, 10702783, 10765603, 13623913, 14916727
OFFSET
1,1
COMMENTS
Not every term is cubefree; some are sb^3 where s is in A159843 and b > 1.
LINKS
EXAMPLE
14916727 = 246^3 + 31^3 = 240^3 + 103^3 and 246 & 31 are coprime, as are 240 & 103, but it is not also the sum of cubes of 2 non-coprime positive integers, so 14916727 is in the sequence.
MATHEMATICA
Module[{smax = 2*10^8 (* upper limit of terms *), m, f, s}, m = smax^(1/3) // Ceiling; f[_] = {}; Reap[Do[AppendTo[f[s = i^3 + j^3], {i, j}]; If[s <= smax && Length[f[s]] >= 2 && AllTrue[f[s], CoprimeQ @@ #&], Sow[s]], {i, 1, m}, {j, i, m}]][[2, 1]]] // Sort (* Jean-François Alcover, Jun 29 2023 *)
CROSSREFS
Cf. A023050 (3 ways); A272885 (cubefree with positive cubes).
Cf. A159843, A293648 (allows negatives).
KEYWORD
nonn
AUTHOR
Rosalie Fay, Oct 16 2017
STATUS
approved

Search completed in 0.011 seconds