[go: up one dir, main page]

login
Search: a001235 -id:a001235
     Sort: relevance | references | number | modified | created      Format: long | short | data
Multiples of 1729, the Hardy-Ramanujan number.
+10
1
0, 1729, 3458, 5187, 6916, 8645, 10374, 12103, 13832, 15561, 17290, 19019, 20748, 22477, 24206, 25935, 27664, 29393, 31122, 32851, 34580, 36309, 38038, 39767, 41496, 43225, 44954, 46683, 48412, 50141, 51870, 53599, 55328, 57057
OFFSET
0,2
COMMENTS
About 1729: "No," said Ramanujan, "It is a very interesting number..."
REFERENCES
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1997, 153.
FORMULA
a(n) = 1729 * n.
MATHEMATICA
1729Range[0, 37] (* Alonso del Arte, Feb 19 2015 *)
PROG
(PARI) a(n)=1729*n \\ Charles R Greathouse IV, Feb 21 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, Mar 09 2008
STATUS
approved
Powers of 1729, the Hardy-Ramanujan number.
+10
1
1, 1729, 2989441, 5168743489, 8936757492481, 15451653704499649, 26715909255079893121, 46191807102033135206209, 79865634479415290771535361, 138087682014909037743984639169, 238753602203777726259349441123201, 412804978210331688702415183702014529
OFFSET
0,2
COMMENTS
About 1729: "No," said Ramanujan, "It is a very interesting number..."
REFERENCES
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1997, 153.
FORMULA
a(n) = 1729^n.
From Chai Wah Wu, Jan 19 2021: (Start)
a(n) = 1729*a(n-1) for n > 0.
G.f.: 1/(1 - 1729*x). (End)
MATHEMATICA
1729^Range[0, 9] (* Alonso del Arte, Oct 18 2014 *)
PROG
(PARI) a(n)=1729^n \\ Charles R Greathouse IV, Jan 20 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Mar 09 2008
STATUS
approved
Numbers that are the sum of 2 (not-distinct) numbers; nonzero power3 and power5, including repetitions.
+10
1
2, 9, 28, 33, 40, 59, 65, 96, 126, 157, 217, 244, 248, 251, 270, 307, 344, 368, 375, 459, 513, 544, 586, 730, 755, 761, 972, 1001, 1025, 1032, 1032, 1051, 1088, 1149, 1240, 1243, 1332, 1363, 1367, 1536, 1574, 1729, 1753, 1760, 1971, 2024, 2198, 2229, 2355
OFFSET
1,1
COMMENTS
40=2^3+2^5, 1032=2^3+4^5 = 1032=10^3+2^5, 1971=12^3+3^5, ...
MATHEMATICA
lst={}; Do[Do[Do[a=x^3+y^5; If[a>n, Break[]]; If[a==n, AppendTo[lst, n]], {y, 5!}], {x, 5!}], {n, 7!}]; lst
KEYWORD
nonn
AUTHOR
STATUS
approved
Numbers that are both Poulet and Proth.
+10
1
1729, 4033, 8321, 12801, 65281, 130561, 348161, 3225601, 8355841, 8384513, 16773121, 40280065, 104988673, 2147418113, 4294901761, 4294967297, 53282340865, 68719214593, 137439477761, 1099510579201, 1911029760001, 2199021158401, 8796097216513, 281474959933441, 9007199388958721, 576460753377165313, 2305843011361177601, 18446744073709551617
OFFSET
1,1
COMMENTS
Intersection of A080075 and A001567.
a(1) = 1729 is known as the Hardy-Ramanujan number (see A001235). - Omar E. Pol, Jun 14 2014
CROSSREFS
Cf. A080075 (Proth numbers), A001567 (Poulet numbers).
KEYWORD
nonn
AUTHOR
Lear Young, May 25 2014
EXTENSIONS
a(20)-a(28) from Max Alekseyev, May 28 2014
STATUS
approved
Triangle read by rows: T(n,k) = 6*k + 1, n>=0, 0<=k<=(2^n-1).
+10
1
1, 1, 7, 1, 7, 13, 19, 1, 7, 13, 19, 25, 31, 37, 43, 1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, 163, 169, 175, 181, 187, 1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, 103
OFFSET
0,3
COMMENTS
Row n lists the first 2^n terms of A016921, n >= 0.
Row sums give A165665.
Right border gives A048488.
The sum of all terms of the first k rows gives A060867(k).
The product of the terms of the third row is equal to the Hardy-Ramanujan number: 1 * 7 * 13 * 19 = 1729.
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..16382 (rows 0..13 of the triangle, flattened)
EXAMPLE
Triangle begins:
1;
1,7;
1,7,13,19;
1,7,13,19,25,31,37,43;
1,7,13,19,25,31,37,43,49,55,61,67,73,79,85,91;
...
Illustration of initial terms in the fourth quadrant of the square grid:
------------------------------------------------------------------------
n a(n) Compact diagram
------------------------------------------------------------------------
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
0 1 |_|_ |_ _ _ |_ _ _ _ _ _ _ |
1 1 | |_| |_ _ | |_ _ _ _ _ _ | |
2 7 |_ _ _|_ | | |_ _ _ _ _ | | |
3 1 | | | |_| | | |_ _ _ _ | | | |
4 7 | | |_ _ _| | |_ _ _ | | | | |
5 13 | |_ _ _ _ _| |_ _ | | | | | |
6 19 |_ _ _ _ _ _ _|_ | | | | | | |
7 1 | | | | | | | |_| | | | | | | |
8 7 | | | | | | |_ _ _| | | | | | |
9 13 | | | | | |_ _ _ _ _| | | | | |
10 19 | | | | |_ _ _ _ _ _ _| | | | |
11 25 | | | |_ _ _ _ _ _ _ _ _| | | |
12 31 | | |_ _ _ _ _ _ _ _ _ _ _| | |
13 37 | |_ _ _ _ _ _ _ _ _ _ _ _ _| |
14 43 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
a(n) is also the number of cells in the n-th region of the diagram.
For other diagrams of the same family see A241717 and A256258.
MATHEMATICA
With[{rows=7}, Array[Range[1, 6*2^#, 6]&, rows, 0]] (* Paolo Xausa, Sep 26 2023 *)
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Apr 30 2015
STATUS
approved
Divisors of 1728.
+10
1
1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 64, 72, 96, 108, 144, 192, 216, 288, 432, 576, 864, 1728
OFFSET
1,2
COMMENTS
A000578(12) = 1728 is the cube of 12.
The number of divisors of 1728 is A000005(1728) = 28.
The sum of the divisors of 1728 is A000203(1728) = 5080.
The prime factorization of 1728 is 2^6 * 3^3.
1728 + 1 = A001235(1) = A011541(2) = 1729 is the Hardy-Ramanujan number.
Three examples related to cellular automata:
1728 is also the number of ON cells after 32 generations of the cellular automata A160239 and A253088.
1728 is also the total number of ON cells around the central ON cell after 24 generations of the cellular automata A160414 and A256530.
1728 is also the total number of ON cells around the central ON cell after 43 generations of the cellular automata A160172 and A255366.
EXAMPLE
a(3) * a(26) = 3 * 576 = 1728.
a(4) * a(25) = 4 * 432 = 1728.
a(5) * a(24) = 6 * 288 = 1728.
MATHEMATICA
Divisors[1728]
PROG
(Sage) divisors(1728);
(PARI) divisors(1728)
KEYWORD
nonn,fini,full,easy
AUTHOR
Omar E. Pol, Nov 20 2015
STATUS
approved
a(n) = A010057(A273555(n)).
+10
1
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,1
COMMENTS
Related to the distribution of noncube terms in A273555.
What is the distribution of 0's in this sequence as n goes to infinity?
PROG
(PARI) T = thueinit(x^3+1, 1);
isA001235(n) = my(v=thue(T, n)); sum(i=1, #v, v[i][1]>=0 && v[i][2]>=v[i][1])>1;
lista(nn) = for(n=1, nn, if(isA001235(n), print1(ispower(n-sqrtnint(n, 3)^3, 3), ", ")));
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, May 26 2016
STATUS
approved
a(n) = 1729*n^3.
+10
1
1729, 13832, 46683, 110656, 216125, 373464, 593047, 885248, 1260441, 1729000, 2301299, 2987712, 3798613, 4744376, 5835375, 7081984, 8494577, 10083528, 11859211, 13832000, 16012269, 18410392, 21036743, 23901696, 27015625, 30388904, 34031907, 37955008, 42168581, 46683000
OFFSET
1,1
COMMENTS
Previous name was: Taxi-cab numbers of form n^3*1729; in other words, taxi-cab numbers of form n^3*A001235(1).
FORMULA
a(n) = n^3 * 1729.
From Chai Wah Wu, Jan 19 2021: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4.
G.f.: x*(1729*x^2 + 6916*x + 1729)/(x - 1)^4. (End)
EXAMPLE
For n = 11, a(11) = 11^3 * 1729 = 2301299 and a(11) = A001235(67).
MATHEMATICA
Array[1729 #^3 &, 30] (* Michael De Vlieger, Mar 04 2017 *)
PROG
(PARI) vector(n, 30, 1729*n^3) \\ Derek Orr, Mar 05 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Sergey Pavlov, Mar 03 2017
EXTENSIONS
New name from Joerg Arndt, Mar 04 2017
More terms from Sergey Pavlov, Mar 04 2017
STATUS
approved
a(n) is the smallest Carmichael number k such that gpf(p-1) = prime(n) for all prime factors p of k.
+10
1
1729, 252601, 1152271, 1615681, 4335241, 172947529, 214852609, 79624621, 178837201, 775368901, 686059921, 985052881, 5781222721, 10277275681, 84350561, 5255104513, 492559141, 74340674101, 9293756581, 1200778753, 129971289169, 2230305949, 851703301, 8714965001, 6693621481
OFFSET
2,1
COMMENTS
The first term is the Hardy-Ramanujan number. - Omar E. Pol, Nov 25 2019
LINKS
Amiram Eldar, Table of n, a(n) for n = 2..2905 (calculated using data from Claude Goutier; terms 2..831 from Daniel Suteu)
Daniel Suteu, Terms and upper bounds for n = 2..10000 (values greater than 2^64 are upper bounds).
Eric Weisstein's World of Mathematics, Carmichael Number.
EXAMPLE
a(2) = 1729 = (2*3 + 1)(2*2*3 + 1)(2*3*3 + 1).
a(3) = 252601 = (2*2*2*5 + 1)(2*2*3*5 + 1)(2*2*5*5 + 1).
a(4) = 1152271 = (2*3*7 + 1)(2*3*3*7 + 1)(2*3*5*7 + 1).
a(5) = 1615681 = (2*11 + 1)(2*3*3*11 + 1)(2*2*2*2*2*11 + 1).
MATHEMATICA
carmQ[n_] := CompositeQ[n] && Divisible[n - 1, CarmichaelLambda[n]]; gpf[n_] := FactorInteger[n][[-1, 1]]; g[n_] := If[Length[(u = Union[gpf /@ (FactorInteger[n][[;; , 1]] - 1)])] == 1, u[[1]], 1]; m = 5; c = 0; k = 0; v = Table[0, {m}]; While[c < m, k++ If[! carmQ[k], Continue[]]; If[(p = g[k]) > 1, i = PrimePi[p] - 1; If[i <= m && v[[i]] == 0, c++; v[[i]] = k]]]; v (* Amiram Eldar, Oct 08 2019 *)
PROG
(Perl) use ntheory ":all"; sub a { my $p = nth_prime(shift); for(my $k = 1; ; ++$k) { return $k if (is_carmichael($k) and vecall { (factor($_-1))[-1] == $p } factor($k)) } }
for my $n (2..10) { print "a($n) = ", a($n), "\n" }
CROSSREFS
Cf. A002997 (Carmichael numbers), A006530 (gpf), A001235.
KEYWORD
nonn
AUTHOR
Daniel Suteu, Sep 25 2019
STATUS
approved
Numbers k such that k^3 = x^3 + y^3 + z^3, x > y > z >= 0, has at least 2 distinct solutions.
+10
1
18, 36, 41, 46, 54, 58, 60, 72, 75, 76, 81, 82, 84, 87, 88, 90, 92, 96, 100, 108, 114, 116, 120, 123, 126, 132, 134, 138, 140, 142, 144, 145, 150, 152, 156, 159, 160, 162, 164, 168, 170, 171, 174, 176, 178, 180, 184, 185, 186, 189, 190, 192, 198, 200, 201, 202, 203
OFFSET
1,1
COMMENTS
This sequence is based on a generalization of Fermat's last theorem with n=3, in which three terms are added. Fermat's Theorem states that there are no solution with only two terms, this sequence shows there are many integers for which there are multiple solutions if three terms are allowed. The sequence is also related to the Taxicab numbers.
EXAMPLE
41 is in the sequence because 41^3 = 33^3 + 32^3 + 6^3 = 40^3 + 17^3 + 2^3.
MATHEMATICA
q[k_] := Count[IntegerPartitions[k^3, {3}, Range[0, k-1]^3], _?(UnsameQ @@ # &)] > 1; Select[Range[200], q] (* Amiram Eldar, Sep 03 2021 *)
PROG
(Python)
from itertools import combinations
from collections import Counter
from sympy import integer_nthroot
def icuberoot(n): return integer_nthroot(n, 3)[0]
def aupto(kmax):
cubes = [i**3 for i in range(kmax+1)]
cands, cubesset = (sum(c) for c in combinations(cubes, 3)), set(cubes)
c = Counter(s for s in cands if s in cubesset)
return sorted(icuberoot(s) for s in c if c[s] >= 2)
print(aupto(203)) # Michael S. Branicky, Sep 04 2021
CROSSREFS
Subsequence of A023042.
KEYWORD
nonn
AUTHOR
Sebastian Magee, Jul 30 2021
STATUS
approved

Search completed in 0.049 seconds