[go: up one dir, main page]

login
Search: a352757 -id:a352757
     Sort: relevance | references | number | modified | created      Format: long | short | data
Positive centered cube numbers that can be written as the difference of two positive cubes: a(n) = t*(3*t^2 + 4)*(t^2*(3*t^2 + 4)^2 + 3)/4 with t = 2*n-1 and n > 0.
+10
8
91, 201159, 15407765, 295233841, 2746367559, 16448122691, 73287987409, 264133278045, 811598515091, 2202365761759, 5410166901741, 12249942682409, 25914353312575, 51755729480091, 98389720844009, 179211321358741, 314429627203659, 533744613620855, 879807401606341, 1412624924155809
OFFSET
1,1
COMMENTS
Numbers A > 0 such that A = B^3 + (B+1)^3 = C^3 - D^3 and such that C - D = 2n - 1, with C > D > B > 0, and A = t*(3*t^2 + 4)*(t^2*(3*t^2 + 4)^2 + 3)/4 with t = 2*n-1, and where A = a(n) (this sequence), B = A352756(n), C = A352757(n) and D = A352758(n).
There are infinitely many such numbers a(n) = A in this sequence.
Subsequence of A005898, of A352133 and of A352220.
LINKS
A. Grinstein, Ramanujan and 1729, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998.
Vladimir Pletser, Euler's and the Taxi-Cab relations and other numbers that can be written twice as sums of two cubed integers, submitted. Preprint available on ResearchGate, 2022.
Eric Weisstein's World of Mathematics, Centered Cube Number
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n) = A352756(n)^3 + (A352756(n) + 1)^3 = A352757(n)^3 - A352758(n)^3 and A352757(n) - A352758(n) = 2n - 1.
a(n) = (2*n - 1)*(3*(2*n - 1)^2 + 4)*((2*n - 1)^2*(3*(2*n - 1)^2 + 4)^2 + 3)/4.
a(n) can be extended for negative n such that a(-n) = -a(n+1).
EXAMPLE
a(1) = 91 belongs to the sequence because 91 = 3^3 + 4^3 = 6^3 - 5^3 and 6 - 5 = 1 = 2*1 - 1.
a(2) = 201159 belongs to the sequence because 201159 = 46^3 + 47^3 = 151^3 - 148^3 and 151 - 148 = 3 = 2*2 - 1.
a(3) = (2*3 - 1)*(3*(2*3 - 1)^2 + 4)*((2*3 - 1)^2*(3*(2*3 - 1)^2 + 4)^2 + 3)/4 = 15407765.
MAPLE
restart; for n to 20 do (1/4)*(2*n-1)*(3*(2*n-1)^2+4)*((2*n-1)^2*(3*(2*n-1)^2+4)^2+3) end do;
KEYWORD
nonn,easy
AUTHOR
Vladimir Pletser, Apr 02 2022
STATUS
approved
Positive numbers k such that the centered cube number k^3 + (k+1)^3 is equal to the difference of two positive cubes and to A352755(n).
+10
8
3, 46, 197, 528, 1111, 2018, 3321, 5092, 7403, 10326, 13933, 18296, 23487, 29578, 36641, 44748, 53971, 64382, 76053, 89056, 103463, 119346, 136777, 155828, 176571, 199078, 223421, 249672, 277903, 308186, 340593, 375196, 412067, 451278, 492901, 537008, 583671, 632962, 684953, 739716, 797323, 857846, 921357
OFFSET
1,1
COMMENTS
Numbers B > 0 such that the centered cube number B^3 + (B+1)^3 is equal to the difference of two positive cubes, i.e., A = B^3 + (B+1)^3 = C^3 - D^3 and such that C - D = 2n - 1, with C > D > B > 0, and A > 0, A = t*(3*t^2 + 4)*(t^2*(3*t^2 + 4)^2 + 3)/4 with t = 2*n-1, and where A = A352755(n), B = a(n) (this sequence), C = A352757(n) and D = A352758(n).
There are infinitely many such numbers a(n) = B in this sequence.
Subsequence of A352134 and of A352221.
LINKS
A. Grinstein, Ramanujan and 1729, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998.
Vladimir Pletser, Euler's and the Taxi-Cab relations and other numbers that can be written twice as sums of two cubed integers, submitted. Preprint available on ResearchGate, 2022.
Eric Weisstein's World of Mathematics, Centered Cube Number
FORMULA
a(n)^3 + (a(n)+1)^3 = A352757(n)^3 - A352758(n)^3 and A352757(n) - A352758(n) = 2*n - 1.
a(n) = ((2*n - 1)*(3*(2*n - 1)^2 + 4) - 1)/2.
For n > 3, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 72, with a(1) = 3, a(2) = 46 and a(3) = 197.
a(n) can be extended for negative n such that a(-n) = -a(n+1) - 1.
G.f.: x*(3 + 34*x + 31*x^2 + 4*x^3)/(1 - x)^4. - Stefano Spezia, Apr 08 2022
EXAMPLE
a(1) = 3 is a term because 3^3 + 4^3 = 6^3 - 5^3 and 6 - 5 = 1 = 2*1 - 1.
a(2) = 46 is a term because 46^3 + 47^3 = 151^3 - 148^3 and 151 - 148 = 3 = 2*2 - 1.
a(3) = ((2*3 - 1)*(3*(2*3 - 1)^2 + 4) - 1)/2 = 197.
a(4) = 3*197 - 3*46 + 3 + 72 = 528.
MAPLE
restart; for n to 20 do (1/2)* ((2*n - 1)*(3*(2*n - 1)^2 + 4) - 1); end do;
KEYWORD
nonn,easy
AUTHOR
Vladimir Pletser, Apr 02 2022
STATUS
approved
Centered cube numbers that are the difference of two positive cubes; a(n) = 27*t^3*(27*t^6 + 1)/4 with t = 2*n-1.
+10
8
189, 3587409, 355957875, 7354447191, 70607389041, 429735975669, 1932670025559, 7006302268875, 21612640524741, 58809832966521, 144757538551899, 328260072633759, 695228576765625, 1389765141771741, 2643927354266751, 4818621138983379, 8458493032498509, 14364150148238625, 23685527077994691, 38040743821584231
OFFSET
1,1
COMMENTS
Numbers A > 0 such that A = B^3 + (B+1)^3 = C^3 - D^3 and such that C - D = 3*(2*n - 1) == 3 (mod 6), with (for n > 1) C > D > B > 0, and A = as 27*t^3*(27*t^6 + 1)/4 with t = 2*n-1, and where A = a(n) (this sequence), B = A355751(n), C = A355752(n) and D = A355753(n).
There are infinitely many such numbers a(n) = A in this sequence.
Subsequence of A005898, and of A352133.
LINKS
A. Grinstein, Ramanujan and 1729, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998.
Vladimir Pletser, Euler's and the Taxi-Cab relations and other numbers that can be written twice as sums of two cubed integers, submitted. Preprint available on ResearchGate, 2022.
Eric Weisstein's World of Mathematics, Centered Cube Number
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n) = A355751(n)^3 + (A355751(n) + 1)^3 = A355752(n)^3 - A355753(n)^3 and A355752(n) - A355753(n) = 3*(2*n - 1).
a(n) = 27*(2*n - 1)^3*(27*(2*n - 1)^6 + 1)/4.
a(n) can be extended for negative n such that a(-n) = -a(n+1).
EXAMPLE
a(1) = 189 belongs to the sequence because 189 = 4^3 + 5^3 = 6^3 - 3^3 and 6 - 3 = 3 = 3*(2*1 - 1).
a(2) = 3587409 belongs to the sequence because 3587409 = 121^3 + 122^3 = 369^3 - 360^3 and 369 - 360 = 9 = 3*(2*2 - 1).
a(3) = 27*(2*3 - 1)^3*(27*(2*3 - 1)^6 + 1)/4 = 355957875.
MAPLE
restart; for n from 1 to 20 do 27*(2*n-1)^3*(27*(2*n-1)^6+1)*(1/4); end do;
KEYWORD
nonn,easy
AUTHOR
Vladimir Pletser, Apr 02 2022
STATUS
approved
a(n) = (3*(2*n - 1)^2*((2*n - 1)^2 + 2) - 2*n + 3)/2 for n > 0.
+10
7
5, 148, 1011, 3746, 10081, 22320, 43343, 76606, 126141, 196556, 293035, 421338, 587801, 799336, 1063431, 1388150, 1782133, 2254596, 2815331, 3474706, 4243665, 5133728, 6156991, 7326126, 8654381, 10155580, 11844123, 13734986, 15843721, 18186456, 20779895, 23641318, 26788581, 30240116, 34014931, 38132610
OFFSET
1,1
COMMENTS
Numbers D > 0 such that A = B^3 + (B+1)^3 = C^3 - D^3 such that the difference C - D is odd, C - D = 2*n - 1, and the difference of the positive cubes C^3 - D^3 is equal to centered cube numbers, with C > D > B > 0, and A > 0, A = t*(3*t^2 + 4)*(t^2*(3*t^2 + 4)^2 + 3)/4 with t = 2*n-1, and where A = A352755(n), B = A352756(n), C = A352757(n), and D = a(n) (this sequence).
There are infinitely many such numbers a(n) = D in this sequence.
Subsequence of A352136 and of A352223.
LINKS
A. Grinstein, Ramanujan and 1729, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998.
Vladimir Pletser, Euler's and the Taxi-Cab relations and other numbers that can be written twice as sums of two cubed integers, submitted. Preprint available on ResearchGate, 2022.
Eric Weisstein's World of Mathematics, Centered Cube Number
FORMULA
A352757(n)^3 - a(n)^3 = A352756(n)^3 + (A352756(n) + 1)^3 = A352755(n) and A352757(n) - a(n) = 2*n - 1.
a(n) = (3*(2*n - 1)^2*((2*n - 1)^2 + 2) - 2*n + 3)/2.
For n > 3, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 576*(n - 2), with a(1) = 5, a(2) = 148 and a(3) = 1011.
a(n) can be extended for negative n such that a(-n) = a(n+1) + (2n + 1).
G.f.: x*(5 + 123*x + 321*x^2 + 121*x^3 + 6*x^4)/(1 - x)^5. - Stefano Spezia, Apr 08 2022
EXAMPLE
a(1) = 5 belongs to the sequence as 6^3 - 5^3 = 3^3 + 4^3 = 91 and 6 - 5 = 1 = 2*1 - 1.
a(2) = 148 belongs to the sequence as 151^3 - 148^3 = 46^3 + 47^3 = 201159 and 151 - 148 = 3 = 2*2 - 1.
a(3) = (3*(2*3 - 1)^2*((2*3 - 1)^2 + 2) - 2*3 + 3)/2 = 1011.
a(4) = 3*a(3) - 3*a(2) + a(1) + 576*2 = 3*1011 - 3*148 + 5 + 576*2 = 3746.
MAPLE
restart; for n to 20 do (1/2)*(3*(2*n - 1)^2*((2*n - 1)^2 + 2) - 2*n + 3); end do;
PROG
(Python)
def A352758(n): return n*(n*(n*(24*n - 48) + 48) - 25) + 6 # Chai Wah Wu, Jul 11 2022
KEYWORD
nonn,easy
AUTHOR
Vladimir Pletser, Apr 02 2022
STATUS
approved
Positive numbers k such that the centered cube number k^3 + (k+1)^3 is equal to the difference of two positive cubes and to A352759(n).
+10
6
4, 121, 562, 1543, 3280, 5989, 9886, 15187, 22108, 30865, 41674, 54751, 70312, 88573, 109750, 134059, 161716, 192937, 227938, 266935, 310144, 357781, 410062, 467203, 529420, 596929, 669946, 748687, 833368, 924205, 1021414, 1125211, 1235812, 1353433
OFFSET
1,1
COMMENTS
Numbers B > 0 such that the centered cube number B^3 + (B+1)^3 is equal to the difference of two positive cubes, i.e., A = B^3 + (B+1)^3 = C^3 - D^3 and such that C - D = 3 (2n - 1) == 3 (mod 6), with C > D > B > 0, and A > 0, A = 27*t^3 * (27*t^6 + 1) /4 with t = 2*n-1, and where A = A352759(n), B = a(n) (this sequence), C = A355752(n) and D = A355753(n).
There are infinitely many such numbers a(n) = B in this sequence.
Subsequence of A352134.
LINKS
A. Grinstein, Ramanujan and 1729, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998.
Vladimir Pletser, Euler's and the Taxi-Cab relations and other numbers that can be written twice as sums of two cubed integers, submitted. Preprint available on ResearchGate, 2022.
Eric Weisstein's World of Mathematics, Centered Cube Number
FORMULA
a(n)^3 + (a(n)+1)^3 = A355752(n)^3 - A355753(n)^3 and A355752(n) - A355753(n) = 3*(2*n - 1).
a(n) = (9*(2*n - 1)^3 - 1) / 2.
For n > 3, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 216, with a(1) = 4, a(2) = 121 and a(3) = 562.
a(n) can be extended for negative n such that a(-n) = - a(n+1) - 1.
From Jianing Song, Jul 18 2022: (Start)
G.f.: x*(4+105*x+102*x^2+5*x^3)/(1-x)^4.
E.g.f.: 5 + exp(x)*(-5+9*x+54*x^2+36*x^3). (End)
EXAMPLE
a(1) = 4 is a term because 4^3 + 5^3 = 6^3 - 3^3 and 6 - 3 = 3 = 3*(2*1 - 1).
a(2) = 121 is a term because 121^3 + 122^3 = 369^3 - 360^3 and 369 - 360 = 9 = 3*(2*2 - 1).
a(3) = (9*(2*3 - 1)^3 - 1) / 2 = 562.
a(4) = 3*562 - 3*121 + 4 + 216 = 1543.
MAPLE
restart; for n to 20 do (1/2)*(9*(2*n - 1)^3-1); end do;
KEYWORD
nonn,easy
AUTHOR
Vladimir Pletser, Jul 15 2022
STATUS
approved
a(n) = 3*(2*n - 1)*( 3*(2*n - 1)^3 + 1) / 2.
+10
6
6, 369, 2820, 10815, 29538, 65901, 128544, 227835, 375870, 586473, 875196, 1259319, 1757850, 2391525, 3182808, 4155891, 5336694, 6752865, 8433780, 10410543, 12715986, 15384669, 18452880, 21958635, 25941678, 30443481, 35507244, 41177895, 47502090, 54528213, 62306376, 70888419, 80327910, 90680145, 102002148, 114352671, 127792194
OFFSET
1,1
COMMENTS
Numbers C > 0 such that A = B^3 + (B+1)^3 = C^3 - D^3 such that the difference (C - D) == 3 (mod 6), C - D = 3 (2n - 1) for n > 1, and the difference between the positive cubes C^3 - D^3 is equal to a centered cube number, C^3 - D^3 = B^3 + (B+1)^3, with C > D > B > 0, and A > 0, A = 27*t^3 *(27*t^6+1)/4 with t = 2*n-1, and where A = A352759(n), B = A355751(n), C = a(n) (this sequence), and D = A355753(n).
There are infinitely many such numbers a(n) = C in this sequence.
LINKS
A. Grinstein, Ramanujan and 1729, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998.
Vladimir Pletser, Euler's and the Taxi-Cab relations and other numbers that can be written twice as sums of two cubed integers, submitted. Preprint available on ResearchGate, 2022.
Eric Weisstein's World of Mathematics, Centered Cube Number
FORMULA
a(n)^3 - A355753(n)^3 = A355751(n)^3 + (A355751(n) + 1)^3 = A352759(n) and a(n) - A355753(n) = 3*(2*n - 1).
a(n) = 3*(2*n - 1)*( 3*(2*n - 1)^3 + 1) / 2.
For n > 3, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 1728*(n - 2), with a(1) = 6, a(2) = 369 and a(3) = 2820.
a(n) can be extended for negative n such that a(-n) = a(n+1) - 3*(2*n + 1).
G.f.: -3*x*(2+113*x+345*x^2+115*x^3+x^4) / (x-1)^5 . - R. J. Mathar, Aug 03 2022
EXAMPLE
a(1) = 6 belongs to the sequence as 6^3 - 3^3 = 4^3 + 5^3 = 189 and 6 - 3 = 3 = 3 (2*1 - 1).
a(2) = 369 belongs to the sequence as 369^3 - 360^3 = 121^3 + 122^3 = 3587409 and 369 - 360 = 9 = 3*(2*2 - 1).
a(3) = 3*(2*3 - 1)*( 3*(2*3 - 1)^3 + 1) / 2 = 2820.
a(4) = 3*a(3) - 3*a(2) + a(1) + 1728*2 = 3*2820 - 3*369 + 6 + 1728*2 = 10815.
MAPLE
restart; for n to 20 do (1/2)* 3*(2*n - 1)*(3*(2*n - 1)^3+1); end do;
PROG
(PARI) a(n)=3*(2*n-1)*(3*(2*n-1)^3+1)/2 \\ Charles R Greathouse IV, Oct 21 2022
KEYWORD
nonn,easy
AUTHOR
Vladimir Pletser, Jul 15 2022
STATUS
approved
a(n) = 3*(2*n - 1)*( 3*(2*n - 1)^3 - 1) / 2 for n > 0.
+10
6
3, 360, 2805, 10794, 29511, 65868, 128505, 227790, 375819, 586416, 875133, 1259250, 1757775, 2391444, 3182721, 4155798, 5336595, 6752760, 8433669, 10410426, 12715863, 15384540, 18452745, 21958494, 25941531, 30443328, 35507085, 41177730, 47501919, 54528036, 62306193, 70888230, 80327715, 90679944, 102001941, 114352458, 127791975
OFFSET
1,1
COMMENTS
Numbers D > 0 such that A = B^3 + (B+1)^3 = C^3 - D^3 such that the difference C - D == 3 (mod 6), C - D = 3*(2*n - 1) for n > 1, and the difference of the positive cubes C^3 - D^3 is equal to centered cube numbers, with C > D > B > 0, and A > 0, A = 27*t^3 *(27*t^6+1)/4 with t = 2*n-1, and where A = A352759(n), B = A355751(n), C = A355752(n), and D = a(n) (this sequence).
There are infinitely many such numbers a(n) = D in this sequence.
Subsequence of A352136 and of A352223.
LINKS
A. Grinstein, Ramanujan and 1729, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998.
Vladimir Pletser, Euler's and the Taxi-Cab relations and other numbers that can be written twice as sums of two cubed integers, submitted. Preprint available on ResearchGate, 2022.
Eric Weisstein's World of Mathematics, Centered Cube Number
FORMULA
A355752(n)^3 - a(n)^3 = A355751(n)^3 + (A355751(n) + 1)^3 = A352759(n) and A355752(n) - a(n) = 3*(2*n - 1).
a(n) = 3*(2*n - 1)*( 3*(2*n - 1)^3 - 1) / 2 for n > 0.
For n > 3, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 1728*(n - 2), with a(1) = 3, a(2) = 360 and a(3) = 2805.
a(n) can be extended for negative n such that a(-n) = a(n+1) + (2n + 1).
G.f.: -3*x*(1+115*x+345*x^2+113*x^3+2*x^4) / (x-1)^5 . - R. J. Mathar, Aug 03 2022
EXAMPLE
a(1) = 3 belongs to the sequence as 6^3 - 3^3 = 4^3 + 5^3 = 189 and 6 - 3 = 3 = 3*(2*1 - 1).
a(2) = 360 belongs to the sequence as 369^3 - 360^3 = 121^3 + 122^3 = 3587409 and 369 - 360 = 9 = 3*(2*2 - 1).
a(3) = 3*(2*3 - 1)*( 3*(2*3 - 1)^3 - 1) / 2 = 2805.
a(4) = 3*a(3) - 3*a(2) + a(1) + 1728*2 = 3*2805 - 3*360 + 3 + 1728*2 = 10794.
MAPLE
restart; for n to 20 do (1/2)* 3*(2*n - 1)*(3*(2*n - 1)^3-1); end do;
KEYWORD
nonn,easy
AUTHOR
Vladimir Pletser, Jul 15 2022
STATUS
approved

Search completed in 0.022 seconds