[go: up one dir, main page]

login
Search: a008594 -id:a008594
     Sort: relevance | references | number | modified | created      Format: long | short | data
Sums of twin prime pairs.
+10
41
8, 12, 24, 36, 60, 84, 120, 144, 204, 216, 276, 300, 360, 384, 396, 456, 480, 540, 564, 624, 696, 840, 864, 924, 1044, 1140, 1200, 1236, 1284, 1320, 1620, 1644, 1656, 1716, 1764, 2040, 2064, 2100, 2124, 2184, 2304, 2460, 2556, 2580, 2604, 2640, 2856, 2904
OFFSET
1,1
COMMENTS
(p^q)+(q^p) calculated modulo pq, where (p,q) is the n-th twin prime pair. Example: (599^601)+(601^599) == 1200 mod (599*601). - Sam Alexander, Nov 14 2003
El'hakk makes the following claim (without any proof): (q^p)+(p^q) = 2*cosh(q arctanh( sqrt( 1-((2/p)^2) ) )) + 2cosh(p arctanh( sqrt( 1-((2/q)^2) ) )) mod p*q. - Sam Alexander, Nov 14 2003
Also: Numbers N such that N/2-1 and N/2+1 both are prime. - M. F. Hasler, Jan 03 2013
Excluding the first term, all remaining terms have digital root 3, 6 or 9. - J. W. Helkenberg, Jul 24 2013
Except for the first term, this sequence is a subsequence of A005101 (Abundant numbers) and of A008594 (Multiples of 12). - Ivan N. Ianakiev, Jul 04 2021
LINKS
Nicholas John Bizzell-Browning, LIE scales: Composing with scales of linear intervallic expansion, Ph. D. Thesis, Brunel Univ. (UK, 2024). See p. 144.
El'hakk, Page of the time traveler [Archived copy on web.archive.org, as of Oct 28 2009.]
FORMULA
a(n) = 2*A014574(n) = 4*A040040(n) = A111046(n)/2.
a(n) = 12*A002822(n-1) for all n > 1. - M. F. Hasler, Dec 12 2019
EXAMPLE
a(3) = 24 because the twin primes 11 and 13 add to 24.
MAPLE
ZL:=[]:for p from 1 to 1451 do if (isprime(p) and isprime(p+2)) then ZL:=[op(ZL), p+(p+2)]; fi; od; print(ZL); # Zerinvary Lajos, Mar 07 2007
A054735 := proc(n)
2*A001359(n)+2;
end proc: # R. J. Mathar, Jan 06 2013
MATHEMATICA
Select[Table[Prime[n] + 1, {n, 230}], PrimeQ[ # + 1] &] *2 (* Ray Chandler, Oct 12 2005 *)
Total/@Select[Partition[Prime[Range[300]], 2, 1], #[[2]]-#[[1]]==2&] (* Harvey P. Dale, Oct 23 2022 *)
PROG
(PARI) is_A054735(n)={!bittest(n, 0)&&isprime(n\2-1)&&isprime(n\2+1)} \\ M. F. Hasler, Jan 03 2013
(PARI) pp=1; forprime(p=1, 1482, if( p==pp+2, print1(p+pp, ", ")); pp=p) \\ Following a suggestion by R. J. Cano, Jan 05 2013
(Haskell)
a054735 = (+ 2) . (* 2) . a001359 -- Reinhard Zumkeller, Feb 10 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Enoch Haga, Apr 22 2000
EXTENSIONS
Additional comments from Ray Chandler, Nov 16 2003
Broken link fixed by M. F. Hasler, Jan 03 2013
STATUS
approved
Multiples of 12 containing a 12 in their decimal representation.
+10
35
12, 120, 312, 612, 912, 1128, 1200, 1212, 1224, 1236, 1248, 1260, 1272, 1284, 1296, 1512, 1812, 2112, 2124, 2412, 2712, 3012, 3120, 3312, 3612, 3912, 4128, 4212, 4512, 4812, 5112, 5124, 5412, 5712, 6012, 6120, 6312, 6612, 6912, 7128, 7212, 7512, 7812
OFFSET
1,1
FORMULA
a(n) ~ 12n. - Charles R Greathouse IV, Nov 02 2022
MATHEMATICA
Select[12*Range[700], SequenceCount[IntegerDigits[#], {1, 2}]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 25 2017 *)
PROG
(Haskell)
import Data.List (isInfixOf)
a121032 n = a121032_list !! (n-1)
a121032_list = filter ((isInfixOf "12") . show) a008594_list
-- Reinhard Zumkeller, Dec 12 2012
(PARI) is(n)=if(n%12, return(0)); while(n>11, if(n%100==12, return(1)); n\=10); 0 \\ Charles R Greathouse IV, Feb 12 2017
KEYWORD
nonn,base,look,easy
AUTHOR
Reinhard Zumkeller, Jul 21 2006
EXTENSIONS
Data fixed by Reinhard Zumkeller, Dec 12 2012
STATUS
approved
Multiples of 13.
+10
33
0, 13, 26, 39, 52, 65, 78, 91, 104, 117, 130, 143, 156, 169, 182, 195, 208, 221, 234, 247, 260, 273, 286, 299, 312, 325, 338, 351, 364, 377, 390, 403, 416, 429, 442, 455, 468, 481, 494, 507, 520, 533, 546, 559, 572, 585, 598, 611, 624, 637, 650, 663, 676
OFFSET
0,2
COMMENTS
Complement of A113763. - Reinhard Zumkeller, Apr 26 2011
LINKS
Tanya Khovanova, Recursive Sequences
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
FORMULA
(floor(a(n)/10) + 4*(a(n) mod 10)) == 0 modulo 13, see A076310. - Reinhard Zumkeller, Oct 06 2002
a(n) = 13*n = 2*a(n-1) - a(n-2). G.f.: 13x/(x-1)^2. - Vincenzo Librandi, Dec 24 2010
MAPLE
A008595:=n->13*n; seq(A008595(n), n=0..100); # Wesley Ivan Hurt, Jan 30 2014
MATHEMATICA
Range[0, 1000, 13] (* Vladimir Joseph Stephan Orlovsky, May 29 2011 *)
PROG
(PARI) a(n)=13*n \\ Charles R Greathouse IV, Jul 10 2016
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved
a(n) = 24*n - 1.
+10
25
-1, 23, 47, 71, 95, 119, 143, 167, 191, 215, 239, 263, 287, 311, 335, 359, 383, 407, 431, 455, 479, 503, 527, 551, 575, 599, 623, 647, 671, 695, 719, 743, 767, 791, 815, 839, 863, 887, 911, 935, 959, 983, 1007, 1031, 1055, 1079, 1103, 1127, 1151, 1175, 1199
OFFSET
0,2
COMMENTS
a(n) is also the denominator of the finite algebraic formula for the number of partitions of n, if n >= 1. The formula is p(n) = Tr(n)/(24*n - 1), n >= 1. See theorem 1.1 of the Bruinier-Ono paper in the link. For the numerators see A183011.
It appears that a(n) is also the denominator of the coefficient of the third term in the n-th Bruinier-Ono "partition polynomial" H_n(x). See the Bruinier-Ono paper, chapter 5 "Examples". For the numerators see A183007. - Omar E. Pol, Jul 13 2011
Also exponents in the formula q^(-1) + q^23 + 2*q^47 + 3*q^71 + 5*q^95 + 7*q^119 + 11*q^143 + 15*q^167 + ... in which the coefficients are the partition numbers (see A000041, Example section). - Omar E. Pol, Feb 27 2013
LINKS
A. Dabholkar, S. Murthy, and D. Zagier, Quantum Black Holes, Wall Crossing, and Mock Modular Forms, arXiv:1208.4074 [hep-th], 2012-2014, see p. 46.
H. Gupta, Congruent properties of sigma(n), Math. Student 13 (1945) 25-29.
E. Larson and L. Rolen, Integrality properties of the CM-values of certain weak Maass forms, arXiv:1107.4114 [math.NT], 2011.
K. Ono, Congruences for the Andrews spt-function, (see 2.1 Producing modular forms)
W. Sierpinski, Elementary Theory of numbers, Monografie Mathematyczne, vol. 42 (1964) chapt 4, p. 168.
FORMULA
a(n) = A008606(n) - 1.
a(1)=23, a(2)=47, a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jan 23 2011
a(n) = A183011(n)/A000041(n). - Omar E. Pol, Jul 14 2011
24 * A280098(n) = A000203(a(n)) if n>0. - Michael Somos, Dec 25 2016
E.g.f.: (24*x-1)*exp(x). - G. C. Greubel, Aug 14 2018
G.f.: (-1 + 25*x)/(1-x)^2. - Wolfdieter Lang, Dec 10 2021
a(n) = 2*A008594(n) - 1. - Leo Tavares, Jun 06 2023
EXAMPLE
G.f. = -1 + 23*x + 47*x^2 + 71*x^3 + 95*x^4 + 119*x^5 + 143*x^6 + 167*x^7 + ...
MATHEMATICA
Range[23, 2000, 24] (* Vladimir Joseph Stephan Orlovsky, Jun 14 2011 *)
(24*Range[0, 50])-1 (* Harvey P. Dale, Mar 28 2015 *)
PROG
(PARI) a(n)=24*n-1 \\ Charles R Greathouse IV, Jun 14 2011
(Magma) [24*n-1: n in [0..50]]; // G. C. Greubel, Aug 14 2018
CROSSREFS
Cf. A000041, A000203, A008606, A134517 (subset of primes), A183009, A183011, A187206, A280097 (sum of divisors), A280098.
Cf. A008594.
KEYWORD
sign,easy
AUTHOR
Omar E. Pol, Jan 21 2011
STATUS
approved
a(n) = 12*n + 9.
+10
20
9, 21, 33, 45, 57, 69, 81, 93, 105, 117, 129, 141, 153, 165, 177, 189, 201, 213, 225, 237, 249, 261, 273, 285, 297, 309, 321, 333, 345, 357, 369, 381, 393, 405, 417, 429, 441, 453, 465, 477, 489, 501, 513, 525, 537, 549, 561, 573, 585, 597, 609, 621, 633
OFFSET
0,1
COMMENTS
Numbers k such that k mod 2 = (k+1) mod 3 = 1 and (k+2) mod 4 != 1. - Klaus Brockhaus, Jun 15 2004
For n > 3, the number of squares on the infinite 3-column chessboard at <= n knight moves from any fixed point. - Ralf Stephan, Sep 15 2004
A016946 is the subsequence of squares (for n = 3*k*(k+1) = A028896(k), then a(n) = (6k+3)^2 = A016946(k)). - Bernard Schott, Apr 05 2021
FORMULA
a(n) = 6*(4*n+1) - a(n-1) (with a(0)=9). - Vincenzo Librandi, Dec 17 2010
A089911(2*a(n)) = 4. - Reinhard Zumkeller, Jul 05 2013
G.f.: (9 + 3*x)/(1 - x)^2. - Alejandro J. Becerra Jr., Jul 08 2020
Sum_{n>=0} (-1)^n/a(n) = (Pi + log(3-2*sqrt(2)))/(12*sqrt(2)). - Amiram Eldar, Dec 12 2021
E.g.f.: 3*exp(x)*(3 + 4*x). - Stefano Spezia, Feb 25 2023
MATHEMATICA
12*Range[0, 200]+9 (* Vladimir Joseph Stephan Orlovsky, Feb 19 2011 *)
LinearRecurrence[{2, -1}, {9, 21}, 60] (* Harvey P. Dale, Apr 14 2019 *)
PROG
(Sage) [i+9 for i in range(525) if gcd(i, 12) == 12] # Zerinvary Lajos, May 21 2009
(Haskell)
a017629 = (+ 9) . (* 12) -- Reinhard Zumkeller, Jul 05 2013
(PARI) a(n)=12*n+9 \\ Charles R Greathouse IV, Jul 10 2016
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved
a(n) = Fibonacci(n) mod 12.
+10
20
0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1
OFFSET
0,4
COMMENTS
From Reinhard Zumkeller, Jul 05 2013: (Start)
Sequence has been applied by several composers to 12-tone equal temperament pitch structure. The complete Fibonacci mod 12 system (a set of 10 periodic sequences) exhausts all possible ordered dyads; that is, every possible combination of two pitches is found in these sets.
a(A008594(n)) = 0;
a(A227144(n)) = 1;
a(3*A047522(n)) = 2;
a(A017569(n)) = a(2*A016933(n)) = a(4*A016777(n)) = 3;
a(2*A017629(n)) = a(3*A017137(n)) = a(6*A004767(n)) = 4;
a(A227146(n)) = 5;
a(nonexistent) = 6;
a(2*A017581(n)) = 7;
a(2*A017557(n)) = a(4*A016813(n)) = 8;
a(A017617(n)) = a(2*A016957(n)) = a(4*A016789(n)) = 9;
a(3*A047621(n)) = 10;
a(2*A017653(n)) = 11. (End)
LINKS
A. P. Shah, Fibonacci Sequence Modulo m, Fibonacci Quarterly, Vol.6, No.2 (1968), 139-141.
D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly, 67 (1960), 525-532.
Index entries for linear recurrences with constant coefficients, signature (1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1).
FORMULA
Has period of 24, restricted period 12 and multiplier 5.
a(n) = (a(n-1) + a(n-2)) mod 12, a(0) = 0, a(1) = 1.
MAPLE
with(combinat, fibonacci); A089911 := proc(n) fibonacci(n) mod 12; end;
MATHEMATICA
Table[Mod[Fibonacci[n], 12], {n, 0, 100}] (* Vincenzo Librandi, Feb 04 2014 *)
PROG
(Haskell)
a089911 n = a089911_list !! n
a089911_list = 0 : 1 : zipWith (\u v -> (u + v) `mod` 12)
(tail a089911_list) a089911_list
-- Reinhard Zumkeller, Jul 01 2013
(PARI) a(n)=fibonacci(n)%12 \\ Charles R Greathouse IV, Feb 03 2014
(Magma) [Fibonacci(n) mod 12: n in [0..100]]; // Vincenzo Librandi, Feb 04 2014
CROSSREFS
KEYWORD
nonn,hear,easy
AUTHOR
Casey Mongoven, Nov 14 2003
EXTENSIONS
More terms from Ray Chandler, Nov 15 2003
STATUS
approved
Multiples of 14.
+10
18
0, 14, 28, 42, 56, 70, 84, 98, 112, 126, 140, 154, 168, 182, 196, 210, 224, 238, 252, 266, 280, 294, 308, 322, 336, 350, 364, 378, 392, 406, 420, 434, 448, 462, 476, 490, 504, 518, 532, 546, 560, 574, 588, 602, 616, 630, 644, 658, 672, 686, 700, 714, 728
OFFSET
0,2
COMMENTS
a(n) = A033571(n) - A158186(n). - Reinhard Zumkeller, Mar 13 2009
FORMULA
a(n) = 14n = 2*a(n-1) - a(n-2). G.f.: 14x/(x-1)^2. - R. J. Mathar, Jun 23 2009
MATHEMATICA
Range[0, 1000, 14] (* Vladimir Joseph Stephan Orlovsky, May 31 2011 *)
CoefficientList[Series[14 x / (x - 1)^2, {x, 0, 60}], x] (* Vincenzo Librandi, Jun 10 2013 *)
PROG
(PARI) a(n)=14*n \\ Charles R Greathouse IV, Sep 28 2015
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved
a(n) = 12*n + 2.
+10
18
2, 14, 26, 38, 50, 62, 74, 86, 98, 110, 122, 134, 146, 158, 170, 182, 194, 206, 218, 230, 242, 254, 266, 278, 290, 302, 314, 326, 338, 350, 362, 374, 386, 398, 410, 422, 434, 446, 458, 470, 482, 494, 506, 518, 530, 542, 554, 566, 578, 590, 602, 614, 626, 638
OFFSET
0,1
COMMENTS
Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 40 ).
FORMULA
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jun 07 2011
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: 2*(1 + 5*x)/(1-x)^2.
E.g.f.: 2*(1 + 6*x)*exp(x). (End)
Sum_{n>=0} (-1)^n/a(n) = Pi/12 + sqrt(3)*log(2 + sqrt(3))/12. - Amiram Eldar, Dec 12 2021
MAPLE
A017545:=n->12*n+2: seq(A017545(n), n=0..60); # Wesley Ivan Hurt, Apr 27 2017
MATHEMATICA
12*Range[0, 60]+2 (* Vladimir Joseph Stephan Orlovsky, Feb 19 2011 *)
PROG
(Magma) [12*n+2: n in [0..60]]; // Vincenzo Librandi, Jun 07 2011
(PARI) a(n)=12*n+2 \\ Charles R Greathouse IV, Jul 10 2016
(Sage) [2*(6*n+1) for n in (0..60)] # G. C. Greubel, Sep 18 2019
(GAP) List([0..60], n-> 2*(6*n+1) ); # G. C. Greubel, Sep 18 2019
CROSSREFS
Subsequence of A072065.
KEYWORD
nonn,easy
STATUS
approved
a(n) = 12*n + 4.
+10
18
4, 16, 28, 40, 52, 64, 76, 88, 100, 112, 124, 136, 148, 160, 172, 184, 196, 208, 220, 232, 244, 256, 268, 280, 292, 304, 316, 328, 340, 352, 364, 376, 388, 400, 412, 424, 436, 448, 460, 472, 484, 496, 508, 520, 532, 544, 556, 568, 580, 592, 604, 616, 628
OFFSET
0,1
COMMENTS
Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 46 ).
Number of 6 X n 0-1 matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01;0), (11;0) and (01;1). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1<i2, j1<j2 and these elements are in the same relative order as those in the triple (x,y,z). In general, the number of m X n 0-1 matrices in question is given by 2^m+2m(n-1). Cf. m=2: A008574; m=3: A016933; m=4: A022144; m=5: A017293. - Sergey Kitaev, Nov 13 2004
Except for 4, exponents e such that x^e-x^2+1 is reducible.
If Y and Z are 2-blocks of a (3n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 28 2007
Terms are perfect squares iff n is a generalized octagonal number (A001082), then n = k*(3*k-2) and a(n) = (2*(3k-1))^2. - Bernard Schott, Feb 26 2023
LINKS
Tanya Khovanova, Recursive Sequences.
Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory, Vol. 4 (2004), Article A21, 20pp.
William A. Stein, The modular forms database.
FORMULA
A089911(a(n)) = 3. - Reinhard Zumkeller, Jul 05 2013
Sum_{n>=0} (-1)^n/a(n) = sqrt(3)*Pi/36 + log(2)/12. - Amiram Eldar, Dec 12 2021
From Stefano Spezia, Feb 25 2023: (Start)
O.g.f.: 4*(1 + 2*x)/(1 - x)^2.
E.g.f.: 4*exp(x)*(1 + 3*x). (End)
MATHEMATICA
12*Range[0, 200]+4 (* Vladimir Joseph Stephan Orlovsky, Feb 19 2011 *)
PROG
(Magma) [12*n+4: n in [0..50]]; // Vincenzo Librandi, May 04 2011
(Haskell)
a017569 = (+ 4) . (* 12) -- Reinhard Zumkeller, Jul 05 2013
KEYWORD
nonn,easy
STATUS
approved
Triangle read by rows: T(n,k) = n^2 - k^2, 0 <= k < n.
+10
15
1, 4, 3, 9, 8, 5, 16, 15, 12, 7, 25, 24, 21, 16, 9, 36, 35, 32, 27, 20, 11, 49, 48, 45, 40, 33, 24, 13, 64, 63, 60, 55, 48, 39, 28, 15, 81, 80, 77, 72, 65, 56, 45, 32, 17, 100, 99, 96, 91, 84, 75, 64, 51, 36, 19, 121, 120, 117, 112, 105, 96, 85, 72, 57, 40, 21
OFFSET
1,2
COMMENTS
(T(n,k) mod 4) <> 2, see A042965, A016825.
All numbers m occur A034178(m) times.
The row polynomials T(n,x) appear in the calculation of the column g.f.s of triangle A120070 (used to find the frequencies of the spectral lines of the hydrogen atom).
LINKS
FORMULA
Row polynomials: T(n,x) = n^2*Sum_{m=0..n} x^m - Sum_{m=0..n} m^2*x^m = Sum_{k=0..n-1} T(n,k)*x^k, n >= 1.
T(n, k) = A004736(n,k)*A094727(n,k).
T(n, 0) = A000290(n).
T(n, 1) = A005563(n-1) for n>1.
T(n, 2) = A028347(n) for n>2.
T(n, 3) = A028560(n-3) for n>3.
T(n, 4) = A028566(n-4) for n>4.
T(n, n-1) = A005408(n).
T(n, n-2) = A008586(n-1) for n>1.
T(n, n-3) = A016945(n-2) for n>2.
T(n, n-4) = A008590(n-2) for n>3.
T(n, n-5) = A017329(n-3) for n>4.
T(n, n-6) = A008594(n-3) for n>5.
T(n, n-8) = A008598(n-2) for n>7.
T(A005408(k), k) = A000567(k).
Sum_{k=0..n} T(n, k) = A002412(n) (row sums).
From G. C. Greubel, Mar 12 2024: (Start)
Sum_{k=0..n-1} (-1)^k * T(n, k) = A000384(floor((n+1)/2)).
Sum_{k=0..floor((n-1)/2)} T(n-k, k) = A128624(n).
Sum_{k=0..floor((n-1)/2)} (-1)^k*T(n-k, k) = (1/2)*n*(n+1 - (-1)^n*cos(n*Pi/2)). (End)
EXAMPLE
n=3: T(3,x) = 9+8*x+5*x^2.
Triangle begins:
1;
4, 3;
9, 8, 5;
16, 15, 12, 7;
25, 24, 21, 16, 9;
36, 35, 32, 27, 20, 11;
49, 48, 45, 40, 33, 24, 13;
64, 63, 60, 55, 48, 39, 28, 15;
81, 80, 77, 72, 65, 56, 45, 32, 17;
... etc. - Philippe Deléham, Mar 07 2013
MATHEMATICA
Table[n^2 - k^2, {n, 12}, {k, 0, n-1}]//Flatten (* Michael De Vlieger, Nov 25 2015 *)
PROG
(Magma) [n^2-k^2: k in [0..n-1], n in [1..15]]; // G. C. Greubel, Mar 12 2024
(SageMath) flatten([[n^2-k^2 for k in range(n)] for n in range(1, 16)]) # G. C. Greubel, Mar 12 2024
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Reinhard Zumkeller, May 24 2004
STATUS
approved

Search completed in 0.029 seconds