editing
approved
editing
approved
Sum_{k=0..floor((n-1)/2)} (-1)^k*T(n-k, k) = (1/2)*n*(n+1 - (-1)^n*cos(n*Pi/2)). (End)
approved
editing
G. C. Greubel, <a href="/A094728/b094728_1.txt">Table of n, a(n) for n = 1..5050</a>
reviewed
approved
proposed
reviewed
editing
proposed
Triangle read by rows: T(n,k) = n^2 - k^2, 0 <= k < n.
1, 4, 3, 9, 8, 5, 16, 15, 12, 7, 25, 24, 21, 16, 9, 36, 35, 32, 27, 20, 11, 49, 48, 45, 40, 33, 24, 13, 64, 63, 60, 55, 48, 39, 28, 15, 81, 80, 77, 72, 65, 56, 45, 32, 17, 100, 99, 96, 91, 84, 75, 64, 51, 36, 19, 121, 120, 117, 112, 105, 96, 85, 72, 57, 40, 21, 144
T(n,0)=A000290(n); T(n,1)=A005563(n-1) for n>1; T(n,2)=A028347(n) for n>2; T(n,3)=A028560(n-3) for n>3; T(n,4)=A028566(n-4) for n>4;
T(n,n-1)=A005408(n); T(n,n-2)=A008586(n-1) for n>1; T(n,n-3)=A016945(n-2) for n>2; T(n,n-4)=A008590(n-2) for n>3; T(n,n-5)=A017329(n-3) for n>4; T(n,n-6)=A008594(n-3) for n>5; T(n,n-8)=A008598(n-2) for n>7;
(T(n,k) mod 4) <> 2, see A042965, A016825.
row sums give A002412;All numbers m occur A034178(m) times.
(T(n,k) mod 4) <> 2, see A042965, A016825;
all numbers m occur A034178(m) times;
G. C. Greubel, <a href="/A094728/b094728_1.txt">Table of n, a(n) for n = 1..5050</a>
Row polynomials: T(n,x) = n^2*sum(Sum_{m=0..n} x^m, - Sum_{m=0..n)-sum(} m^2*x^m,m = Sum_{k=0..n) = sum(-1} T(n,k)*x^k,k=0..n-1), n >= 1.
T(n, k) = A004736(n,k)*A094727(n,k).
T(n, 0) = A000290(n).
T(n, 1) = A005563(n-1) for n>1.
T(n, 2) = A028347(n) for n>2.
T(n, 3) = A028560(n-3) for n>3.
T(n, 4) = A028566(n-4) for n>4.
T(n, n-1) = A005408(n).
T(n, n-2) = A008586(n-1) for n>1.
T(n, n-3) = A016945(n-2) for n>2.
T(n, n-4) = A008590(n-2) for n>3.
T(n, n-5) = A017329(n-3) for n>4.
T(n, n-6) = A008594(n-3) for n>5.
T(n, n-8) = A008598(n-2) for n>7.
T(A005408(k), k) = A000567(k).
Sum_{k=0..n} T(n, k) = A002412(n) (row sums).
From G. C. Greubel, Mar 12 2024: (Start)
Sum_{k=0..n-1} (-1)^k * T(n, k) = A000384(floor((n+1)/2)).
Sum_{k=0..floor((n-1)/2)} T(n-k, k) = A128624(n).
Sum_{k=0..floor((n-1)/2)} (-1)^k*T(n-k, k) = (1/2)*n*(n+1 - (-1)^n*cos(n*Pi/2)).
1;
4, 3;
9, 8, 5;
16, 15, 12, 7;
25, 24, 21, 16, 9;
36, 35, 32, 27, 20, 11;
49, 48, 45, 40, 33, 24, 13;
64, 63, 60, 55, 48, 39, 28, 15;
81, 80, 77, 72, 65, 56, 45, 32, 17, etc. - _Philippe Deléham_, Mar 07 2013;
... etc. - Philippe Deléham, Mar 07 2013
Table[n^2 - k^2, {n, 12}, {k, 0, n - 1}] // Flatten (* Michael De Vlieger, Nov 25 2015 *)
(Magma) [n^2-k^2: k in [0..n-1], n in [1..15]]; // G. C. Greubel, Mar 12 2024
(SageMath) flatten([[n^2-k^2 for k in range(n)] for n in range(1, 16)]) # G. C. Greubel, Mar 12 2024
nonn,tabl,easy
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed