[go: up one dir, main page]

login
Revision History for A094728 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Triangle read by rows: T(n,k) = n^2 - k^2, 0 <= k < n.
(history; published version)
#22 by Andrey Zabolotskiy at Thu Apr 25 09:07:54 EDT 2024
STATUS

editing

approved

#21 by Andrey Zabolotskiy at Thu Apr 25 09:07:52 EDT 2024
FORMULA

Sum_{k=0..floor((n-1)/2)} (-1)^k*T(n-k, k) = (1/2)*n*(n+1 - (-1)^n*cos(n*Pi/2)). (End)

STATUS

approved

editing

#20 by OEIS Server at Tue Mar 12 02:47:15 EDT 2024
LINKS

G. C. Greubel, <a href="/A094728/b094728_1.txt">Table of n, a(n) for n = 1..5050</a>

#19 by Joerg Arndt at Tue Mar 12 02:47:15 EDT 2024
STATUS

reviewed

approved

Discussion
Tue Mar 12
02:47
OEIS Server: Installed first b-file as b094728.txt.
#18 by Michel Marcus at Tue Mar 12 02:09:16 EDT 2024
STATUS

proposed

reviewed

#17 by G. C. Greubel at Tue Mar 12 01:36:46 EDT 2024
STATUS

editing

proposed

#16 by G. C. Greubel at Tue Mar 12 01:36:39 EDT 2024
NAME

Triangle read by rows: T(n,k) = n^2 - k^2, 0 <= k < n.

DATA

1, 4, 3, 9, 8, 5, 16, 15, 12, 7, 25, 24, 21, 16, 9, 36, 35, 32, 27, 20, 11, 49, 48, 45, 40, 33, 24, 13, 64, 63, 60, 55, 48, 39, 28, 15, 81, 80, 77, 72, 65, 56, 45, 32, 17, 100, 99, 96, 91, 84, 75, 64, 51, 36, 19, 121, 120, 117, 112, 105, 96, 85, 72, 57, 40, 21, 144

COMMENTS

T(n,0)=A000290(n); T(n,1)=A005563(n-1) for n>1; T(n,2)=A028347(n) for n>2; T(n,3)=A028560(n-3) for n>3; T(n,4)=A028566(n-4) for n>4;

T(n,n-1)=A005408(n); T(n,n-2)=A008586(n-1) for n>1; T(n,n-3)=A016945(n-2) for n>2; T(n,n-4)=A008590(n-2) for n>3; T(n,n-5)=A017329(n-3) for n>4; T(n,n-6)=A008594(n-3) for n>5; T(n,n-8)=A008598(n-2) for n>7;

T(A005408(k),k) = A000567(k);

(T(n,k) mod 4) <> 2, see A042965, A016825.

row sums give A002412;All numbers m occur A034178(m) times.

(T(n,k) mod 4) <> 2, see A042965, A016825;

all numbers m occur A034178(m) times;

T(n,k) = A004736(n,k)*A094727(n,k).

LINKS

G. C. Greubel, <a href="/A094728/b094728_1.txt">Table of n, a(n) for n = 1..5050</a>

FORMULA

Row polynomials: T(n,x) = n^2*sum(Sum_{m=0..n} x^m, - Sum_{m=0..n)-sum(} m^2*x^m,m = Sum_{k=0..n) = sum(-1} T(n,k)*x^k,k=0..n-1), n >= 1.

T(n, k) = A004736(n,k)*A094727(n,k).

T(n, 0) = A000290(n).

T(n, 1) = A005563(n-1) for n>1.

T(n, 2) = A028347(n) for n>2.

T(n, 3) = A028560(n-3) for n>3.

T(n, 4) = A028566(n-4) for n>4.

T(n, n-1) = A005408(n).

T(n, n-2) = A008586(n-1) for n>1.

T(n, n-3) = A016945(n-2) for n>2.

T(n, n-4) = A008590(n-2) for n>3.

T(n, n-5) = A017329(n-3) for n>4.

T(n, n-6) = A008594(n-3) for n>5.

T(n, n-8) = A008598(n-2) for n>7.

T(A005408(k), k) = A000567(k).

Sum_{k=0..n} T(n, k) = A002412(n) (row sums).

From G. C. Greubel, Mar 12 2024: (Start)

Sum_{k=0..n-1} (-1)^k * T(n, k) = A000384(floor((n+1)/2)).

Sum_{k=0..floor((n-1)/2)} T(n-k, k) = A128624(n).

Sum_{k=0..floor((n-1)/2)} (-1)^k*T(n-k, k) = (1/2)*n*(n+1 - (-1)^n*cos(n*Pi/2)).

EXAMPLE

1;

4, 3;

9, 8, 5;

16, 15, 12, 7;

25, 24, 21, 16, 9;

36, 35, 32, 27, 20, 11;

49, 48, 45, 40, 33, 24, 13;

64, 63, 60, 55, 48, 39, 28, 15;

81, 80, 77, 72, 65, 56, 45, 32, 17, etc. - _Philippe Deléham_, Mar 07 2013;

... etc. - Philippe Deléham, Mar 07 2013

MATHEMATICA

Table[n^2 - k^2, {n, 12}, {k, 0, n - 1}] // Flatten (* Michael De Vlieger, Nov 25 2015 *)

PROG

(Magma) [n^2-k^2: k in [0..n-1], n in [1..15]]; // G. C. Greubel, Mar 12 2024

(SageMath) flatten([[n^2-k^2 for k in range(n)] for n in range(1, 16)]) # G. C. Greubel, Mar 12 2024

CROSSREFS
KEYWORD

nonn,tabl,easy

STATUS

approved

editing

#15 by Joerg Arndt at Wed Nov 25 12:24:18 EST 2015
STATUS

reviewed

approved

#14 by Michel Marcus at Wed Nov 25 11:50:34 EST 2015
STATUS

proposed

reviewed

#13 by Michael De Vlieger at Wed Nov 25 11:28:06 EST 2015
STATUS

editing

proposed