[go: up one dir, main page]

login
A008594
Multiples of 12: a(n) = 12*n.
51
0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240, 252, 264, 276, 288, 300, 312, 324, 336, 348, 360, 372, 384, 396, 408, 420, 432, 444, 456, 468, 480, 492, 504, 516, 528, 540, 552, 564, 576, 588, 600, 612, 624, 636
OFFSET
0,2
COMMENTS
Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 36 ).
The positive terms are the differences of consecutive star numbers (A003154). - Mihir Mathur, Jun 07 2013
A089911(a(n)) = 0. - Reinhard Zumkeller, Jul 05 2013
a(1) = 12 is a primitive abundant number, thus all a(n), n >= 2, are nonprimitive abundant numbers. - Daniel Forgues, Sep 24 2016
LINKS
Tanya Khovanova, Recursive Sequences
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
William A. Stein, The modular forms database
Wikipedia, Star Number
FORMULA
a(n) = 12*n. a(n) = 2*a(n-1)-a(n-2) for n>1. G.f.: 12*x/(1-x)^2. - Vincenzo Librandi, Jun 11 2011
a(n) = A003154(n)- A003154(n-1). - Mihir Mathur, Jun 07 2013
MAPLE
A008594:=n->12*n: seq(A008594(n), n=0..100); # Wesley Ivan Hurt, Sep 24 2016
MATHEMATICA
12*Range[0, 200] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2011 *)
NestList[12+#&, 0, 60] (* Harvey P. Dale, Feb 02 2022 *)
PROG
(Magma) [12*n: n in [0..50]]; // Vincenzo Librandi, Jun 11 2011
(Haskell)
a008594 = (* 12)
a008594_list = [0, 12 ..] -- Reinhard Zumkeller, Dec 12 2012
(PARI) a(n)=12*n \\ Charles R Greathouse IV, Apr 21 2015
CROSSREFS
Subsequence of A072065 and A121032.
Sequence in context: A044852 A121578 A044897 * A033024 A044837 A033009
KEYWORD
nonn,easy
STATUS
approved