[go: up one dir, main page]

login
A016777
a(n) = 3*n + 1.
279
1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187
OFFSET
0,2
COMMENTS
Numbers k such that the concatenation of the first k natural numbers is not divisible by 3. E.g., 16 is in the sequence because we have 123456789101111213141516 == 1 (mod 3).
Ignoring the first term, this sequence represents the number of bonds in a hydrocarbon: a(#of carbon atoms) = number of bonds. - Nathan Savir (thoobik(AT)yahoo.com), Jul 03 2003
n such that Sum_{k=0..n} (binomial(n+k,n-k) mod 2) is even (cf. A007306). - Benoit Cloitre, May 09 2004
Hilbert series for twisted cubic curve. - Paul Barry, Aug 11 2006
If Y is a 3-subset of an n-set X then, for n >= 3, a(n-3) is the number of 3-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007
a(n) = A144390 (1, 9, 23, 43, 69, ...) - A045944 (0, 5, 16, 33, 56, ...). From successive spectra of hydrogen atom. - Paul Curtz, Oct 05 2008
Number of monomials in the n-th power of polynomial x^3+x^2+x+1. - Artur Jasinski, Oct 06 2008
A145389(a(n)) = 1. - Reinhard Zumkeller, Oct 10 2008
Union of A035504, A165333 and A165336. - Reinhard Zumkeller, Sep 17 2009
Hankel transform of A076025. - Paul Barry, Sep 23 2009
From Jaroslav Krizek, May 28 2010: (Start)
a(n) = numbers k such that the antiharmonic mean of the first k positive integers is an integer.
A169609(a(n-1)) = 1. See A146535 and A169609. Complement of A007494.
See A005408 (odd positive integers) for corresponding values A146535(a(n)). (End)
Apart from the initial term, A180080 is a subsequence; cf. A180076. - Reinhard Zumkeller, Aug 14 2010
Also the maximum number of triangles that n + 2 noncoplanar points can determine in 3D space. - Carmine Suriano, Oct 08 2010
A089911(4*a(n)) = 3. - Reinhard Zumkeller, Jul 05 2013
The number of partitions of 6*n into at most 2 parts. - Colin Barker, Mar 31 2015
For n >= 1, a(n)/2 is the proportion of oxygen for the stoichiometric combustion reaction of hydrocarbon CnH2n+2, e.g., one part propane (C3H8) requires 5 parts oxygen to complete its combustion. - Kival Ngaokrajang, Jul 21 2015
Exponents n > 0 for which 1 + x^2 + x^n is reducible. - Ron Knott, Oct 13 2016
Also the number of independent vertex sets in the n-cocktail party graph. - Eric W. Weisstein, Sep 21 2017
Also the number of (not necessarily maximal) cliques in the n-ladder rung graph. - Eric W. Weisstein, Nov 29 2017
Also the number of maximal and maximum cliques in the n-book graph. - Eric W. Weisstein, Dec 01 2017
For n>=1, a(n) is the size of any snake-polyomino with n cells. - Christian Barrientos and Sarah Minion, Feb 27 2018
The sum of two distinct terms of this sequence is never a square. See Lagarias et al. p. 167. - Michel Marcus, May 20 2018
It seems that, for any n >= 1, there exists no positive integer z such that digit_sum(a(n)*z) = digit_sum(a(n)+z). - Max Lacoma, Sep 18 2019
For n > 2, a(n-2) is the number of distinct values of the magic constant in a normal magic triangle of order n (see formula 5 in Trotter). - Stefano Spezia, Feb 18 2021
Number of 3-permutations of n elements avoiding the patterns 132, 231, 312. See Bonichon and Sun. - Michel Marcus, Aug 20 2022
Erdős & Sárközy conjecture that a set of n positive integers with property P must have some element at least a(n-1) = 3n - 2. Property P states that, for x, y, and z in the set and z < x, y, z does not divide x+y. An example of such a set is {2n-1, 2n, ..., 3n-2}. Bedert proves this for large enough n. (This is an upper bound, and is exact for all known n; I have verified it for n up to 12.) - Charles R Greathouse IV, Feb 06 2023
a(n-1) = 3*n-2 is the dimension of the vector space of all n X n tridiagonal matrices, equals the number of nonzero coefficients: n + 2*(n-1) (see Wikipedia link). - Bernard Schott, Mar 03 2023
REFERENCES
W. Decker, C. Lossen, Computing in Algebraic Geometry, Springer, 2006, p. 22
Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 269.
LINKS
Hacène Belbachir, Toufik Djellal, and Jean-Gabriel Luque, On the self-convolution of generalized Fibonacci numbers, arXiv:1703.00323 [math.CO], 2017.
Benjamin Bedert, On a problem of Erdős and Sárközy about sequences with no term dividing the sum of two larger terms, arXiv preprint, arXiv:2301.07065 [math.NT], 2023.
Nicolas Bonichon and Pierre-Jean Morel, Baxter d-permutations and other pattern avoiding classes, arXiv:2202.12677 [math.CO], 2022.
Paul Erdős and András Sárközy, On the divisibility properties of sequences of integers, Proc. London Math. Soc. (3), 21 (1970), pp. 97-101.
Leonhard Euler, Observatio de summis divisorum p. 9.
Leonhard Euler, An observation on the sums of divisors, arXiv:math/0411587 [math.HO], 2004-2009, see p. 9.
L. B. W. Jolley, Summation of Series, Dover, 1961, pp. 16, 38.
Tanya Khovanova, Recursive Sequences
Konrad Knopp, Theorie und Anwendung der unendlichen Reihen, Berlin, J. Springer, 1922. (Original German edition of "Theory and Application of Infinite Series")
J. C. Lagarias, A. M. Odlyzko, and J. B. Shearer, On the density of sequences of integers the sum of no two of which is a square. I. Arithmetic progressions, Journal of Combinatorial Theory. Series A, 33 (1982), pp. 167-185.
T. Mansour, Permutations avoiding a set of patterns from S_3 and a pattern from S_4, arXiv:math/9909019 [math.CO], 1999.
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
Nathan Sun, On d-permutations and Pattern Avoidance Classes, arXiv:2208.08506 [math.CO], 2022.
Terrel Trotter, Normal Magic Triangles of Order n, Journal of Recreational Mathematics Vol. 5, No. 1, 1972, pp. 28-32.
Eric Weisstein's World of Mathematics, Book Graph
Eric Weisstein's World of Mathematics, Clique
Eric Weisstein's World of Mathematics, Cocktail Party Graph
Eric Weisstein's World of Mathematics, Independent Vertex Set
Eric Weisstein's World of Mathematics, Ladder Rung Graph
Eric Weisstein's World of Mathematics, Maximal Clique
Eric Weisstein's World of Mathematics, Maximum Clique
Wikipedia, Tridiagonal matrix.
Chengcheng Yang, A Problem of Erdös Concerning Lattice Cubes, arXiv:2011.15010 [math.CO], 2020. See Table p. 27.
FORMULA
G.f.: (1+2*x)/(1-x)^2.
a(n) = A016789(n) - 1.
a(n) = 3 + a(n-1).
Sum_{n>=1} (-1)^n/a(n) = (1/3)*(Pi/sqrt(3) + log(2)). [Jolley, p. 16, (79)] - Benoit Cloitre, Apr 05 2002
(1 + 4*x + 7*x^2 + 10*x^3 + ...) = (1 + 2*x + 3*x^2 + ...)/(1 - 2*x + 4*x^2 - 8*x^3 + ...). - Gary W. Adamson, Jul 03 2003
E.g.f.: exp(x)*(1+3*x). - Paul Barry, Jul 23 2003
a(n) = 2*a(n-1) - a(n-2); a(0)=1, a(1)=4. - Philippe Deléham, Nov 03 2008
a(n) = 6*n - a(n-1) - 1 (with a(0) = 1). - Vincenzo Librandi, Nov 20 2010
Sum_{n>=0} 1/a(n)^2 = A214550. - R. J. Mathar, Jul 21 2012
a(n) = A238731(n+1,n) = (-1)^n*Sum_{k = 0..n} A238731(n,k)*(-5)^k. - Philippe Deléham, Mar 05 2014
Sum_{i=0..n} (a(i)-i) = A000290(n+1). - Ivan N. Ianakiev, Sep 24 2014
From Wolfdieter Lang, Mar 09 2018: (Start)
a(n) = denominator(Sum_{k=0..n-1} 1/(a(k)*a(k+1)), with the numerator n = A001477(n), where the sum is set to 0 for n = 0. [Jolley, p. 38, (208)]
G.f. for {n/(1 + 3*n)}_{n >= 0} is (1/3)*(1-hypergeom([1, 1], [4/3], -x/(1-x)))/(1-x). (End)
a(n) = -A016789(-1-n) for all n in Z. - Michael Somos, May 27 2019
EXAMPLE
G.f. = 1 + 4*x + 7*x^2 + 10*x^3 + 13*x^4 + 16*x^5 + 19*x^6 + 22*x^7 + ... - Michael Somos, May 27 2019
MATHEMATICA
Range[1, 199, 3] (* Vladimir Joseph Stephan Orlovsky, May 26 2011 *)
(* Start from Eric W. Weisstein, Sep 21 2017 *)
3 Range[0, 70] + 1
Table[3 n + 1, {n, 0, 70}]
LinearRecurrence[{2, -1}, {1, 4}, 70]
CoefficientList[Series[(1 + 2 x)/(-1 + x)^2, {x, 0, 70}], x]
(* End *)
PROG
(Magma) [3*n+1 : n in [1..70]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
(Haskell)
a016777 = (+ 1) . (* 3)
a016777_list = [1, 4 ..] -- Reinhard Zumkeller, Feb 28 2013, Feb 10 2012
(Maxima) A016777(n):=3*n+1$
makelist(A016777(n), n, 0, 30); /* Martin Ettl, Oct 31 2012 */
(PARI) a(n)=3*n+1 \\ Charles R Greathouse IV, Jul 28 2015
(SageMath) [3*n+1 for n in range(1, 71)] # G. C. Greubel, Mar 15 2024
CROSSREFS
Cf. A007559 (partial products), A051536 (lcm).
First differences of A000326.
Row sums of A131033.
Complement of A007494. - Reinhard Zumkeller, Oct 10 2008
Some subsequences: A002476 (primes), A291745 (nonprimes), A135556 (squares), A016779 (cubes).
Sequence in context: A190084 A145289 A112335 * A308014 A143460 A338701
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 11 1996
EXTENSIONS
Better description from T. D. Noe, Aug 15 2002
Partially edited by Joerg Arndt, Mar 11 2010
STATUS
approved