OFFSET
0,4
COMMENTS
From Reinhard Zumkeller, Jul 05 2013: (Start)
Sequence has been applied by several composers to 12-tone equal temperament pitch structure. The complete Fibonacci mod 12 system (a set of 10 periodic sequences) exhausts all possible ordered dyads; that is, every possible combination of two pitches is found in these sets.
a(A008594(n)) = 0;
a(A227144(n)) = 1;
a(3*A047522(n)) = 2;
a(A227146(n)) = 5;
a(nonexistent) = 6;
a(2*A017581(n)) = 7;
a(3*A047621(n)) = 10;
a(2*A017653(n)) = 11. (End)
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..1199
Ron Knott, Fibonacci Numbers and the Golden Section
M. Renault, The Fibonacci Sequence Modulo M
A. P. Shah, Fibonacci Sequence Modulo m, Fibonacci Quarterly, Vol.6, No.2 (1968), 139-141.
D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly, 67 (1960), 525-532.
Index entries for linear recurrences with constant coefficients, signature (1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1).
FORMULA
Has period of 24, restricted period 12 and multiplier 5.
a(n) = (a(n-1) + a(n-2)) mod 12, a(0) = 0, a(1) = 1.
MAPLE
with(combinat, fibonacci); A089911 := proc(n) fibonacci(n) mod 12; end;
MATHEMATICA
Table[Mod[Fibonacci[n], 12], {n, 0, 100}] (* Vincenzo Librandi, Feb 04 2014 *)
PROG
(Haskell)
a089911 n = a089911_list !! n
a089911_list = 0 : 1 : zipWith (\u v -> (u + v) `mod` 12)
(tail a089911_list) a089911_list
-- Reinhard Zumkeller, Jul 01 2013
(PARI) a(n)=fibonacci(n)%12 \\ Charles R Greathouse IV, Feb 03 2014
(Magma) [Fibonacci(n) mod 12: n in [0..100]]; // Vincenzo Librandi, Feb 04 2014
CROSSREFS
KEYWORD
AUTHOR
Casey Mongoven, Nov 14 2003
EXTENSIONS
More terms from Ray Chandler, Nov 15 2003
STATUS
approved