[go: up one dir, main page]

login
A089911
a(n) = Fibonacci(n) mod 12.
20
0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1
OFFSET
0,4
COMMENTS
From Reinhard Zumkeller, Jul 05 2013: (Start)
Sequence has been applied by several composers to 12-tone equal temperament pitch structure. The complete Fibonacci mod 12 system (a set of 10 periodic sequences) exhausts all possible ordered dyads; that is, every possible combination of two pitches is found in these sets.
a(A008594(n)) = 0;
a(A227144(n)) = 1;
a(3*A047522(n)) = 2;
a(A017569(n)) = a(2*A016933(n)) = a(4*A016777(n)) = 3;
a(2*A017629(n)) = a(3*A017137(n)) = a(6*A004767(n)) = 4;
a(A227146(n)) = 5;
a(nonexistent) = 6;
a(2*A017581(n)) = 7;
a(2*A017557(n)) = a(4*A016813(n)) = 8;
a(A017617(n)) = a(2*A016957(n)) = a(4*A016789(n)) = 9;
a(3*A047621(n)) = 10;
a(2*A017653(n)) = 11. (End)
LINKS
A. P. Shah, Fibonacci Sequence Modulo m, Fibonacci Quarterly, Vol.6, No.2 (1968), 139-141.
D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly, 67 (1960), 525-532.
Index entries for linear recurrences with constant coefficients, signature (1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1).
FORMULA
Has period of 24, restricted period 12 and multiplier 5.
a(n) = (a(n-1) + a(n-2)) mod 12, a(0) = 0, a(1) = 1.
MAPLE
with(combinat, fibonacci); A089911 := proc(n) fibonacci(n) mod 12; end;
MATHEMATICA
Table[Mod[Fibonacci[n], 12], {n, 0, 100}] (* Vincenzo Librandi, Feb 04 2014 *)
PROG
(Haskell)
a089911 n = a089911_list !! n
a089911_list = 0 : 1 : zipWith (\u v -> (u + v) `mod` 12)
(tail a089911_list) a089911_list
-- Reinhard Zumkeller, Jul 01 2013
(PARI) a(n)=fibonacci(n)%12 \\ Charles R Greathouse IV, Feb 03 2014
(Magma) [Fibonacci(n) mod 12: n in [0..100]]; // Vincenzo Librandi, Feb 04 2014
CROSSREFS
KEYWORD
nonn,hear,easy
AUTHOR
Casey Mongoven, Nov 14 2003
EXTENSIONS
More terms from Ray Chandler, Nov 15 2003
STATUS
approved