[go: up one dir, main page]

login
A134517
Primes of the form 24*k - 1.
11
23, 47, 71, 167, 191, 239, 263, 311, 359, 383, 431, 479, 503, 599, 647, 719, 743, 839, 863, 887, 911, 983, 1031, 1103, 1151, 1223, 1319, 1367, 1439, 1487, 1511, 1559, 1583, 1607, 1823, 1847, 1871, 2039, 2063, 2087, 2111, 2207, 2351, 2399, 2423, 2447, 2543
OFFSET
1,1
COMMENTS
Corresponding values of k are in A131210.
Is this the same sequence as A141376?
Primes in A183010. - Omar E. Pol, Oct 08 2011
Inert rational primes in the fields Q(sqrt(-1)), Q(sqrt(-2)), Q(sqrt(-3)). - Eyal Gruss, Nov 30 2022
LINKS
FORMULA
a(n) = A183010(A131210(n)). - Omar E. Pol, Nov 04 2017
MAPLE
select(isprime, [seq(24*n-1, n=1..120)]); # Muniru A Asiru, Mar 04 2018
MATHEMATICA
Select[Prime[Range[1000]], Mod[ #, 24]==23&]
Select[24*Range[200]-1, PrimeQ] (* Harvey P. Dale, Jun 17 2018 *)
PROG
(GAP) Filtered(List([1..120], n->24*n-1), IsPrime); # Muniru A Asiru, Mar 04 2018
(PARI) lista(nn) = for(k=1, nn, if(isprime(p=24*k-1), print1(p", "))) \\ Altug Alkan, Mar 04 2018
CROSSREFS
Intersection of A002145, A003627, A045355.
Sequence in context: A042042 A130063 A183010 * A141376 A140614 A001124
KEYWORD
nonn
AUTHOR
Zak Seidov, Oct 29 2007
STATUS
approved