[go: up one dir, main page]

login
Search: a004190 -id:a004190
     Sort: relevance | references | number | modified | created      Format: long | short | data
Partial sums of Chebyshev sequence S(n,11) = U(n,11/2) = A004190(n).
+20
7
1, 12, 132, 1441, 15720, 171480, 1870561, 20404692, 222581052, 2427986881, 26485274640, 288910034160, 3151525101121, 34377866078172, 375005001758772, 4090677153268321, 44622443684192760, 486756203372852040, 5309695793417179681, 57919897524216124452
OFFSET
0,2
REFERENCES
R. C. Alperin, A nonlinear recurrence and its relations to Chebyshev polynomials, Fib. Q., 58:2 (2020), 140-142.
FORMULA
a(n) = Sum_{k=0..n} S(k, 11), with S(k, 11) = U(k, 11/2) = A004190(k) Chebyshev's polynomials of the second kind.
G.f.: 1/((1-x)*(1 - 11*x + x^2)) = 1/(1 - 12*x + 12*x^2 - x^3).
a(n) = 12*a(n-1) - 12*a(n-2) + a(n-3) with n >= 2, a(-1)=0, a(0)=1, a(1)=12.
a(n) = 11*a(n-1) - a(n-2) + 1 with n >= 1, a(-1)=0, a(0)=1.
a(n) = (S(n+1, 11) - S(n, 11) - 1)/9.
a(n) = (2^(-n)*(-13*2^n + (65 - 18*sqrt(13))*(11 - 3*sqrt(13))^n + (11 + 3*sqrt(13))^n*(65 + 18*sqrt(13))))/117. - Colin Barker, Mar 06 2016
MATHEMATICA
LinearRecurrence[{12, -12, 1}, {1, 12, 132}, 30] (* G. C. Greubel, May 24 2019 *)
PROG
(PARI) Vec(1/((1-x)*(1-11*x+x^2)) + O(x^30)) \\ Colin Barker, Jun 15 2015
(Magma) I:=[1, 12, 132]; [n le 3 select I[n] else 12*Self(n-1)-12*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, May 24 2019
(Sage) (1/((1-x)*(1 - 11*x + x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 24 2019
(GAP) a:=[1, 12, 132];; for n in [4..30] do a[n]:=12*a[n-1]-12*a[n-2]+ a[n-3]; od; a; # G. C. Greubel, May 24 2019
CROSSREFS
Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 31 2004
STATUS
approved
a(n) = 3*a(n-1) + a(n-2), with a(0)=0, a(1)=1.
(Formerly M2844)
+10
147
0, 1, 3, 10, 33, 109, 360, 1189, 3927, 12970, 42837, 141481, 467280, 1543321, 5097243, 16835050, 55602393, 183642229, 606529080, 2003229469, 6616217487, 21851881930, 72171863277, 238367471761, 787274278560, 2600190307441
OFFSET
0,3
COMMENTS
Denominators of continued fraction convergents to (3+sqrt(13))/2. - Benoit Cloitre, Jun 14 2003
a(n) and A006497(n) occur in pairs: (a,b): (1,3), (3,11), (10,36), (33,119), (109,393), ... such that b^2 - 13a^2 = 4(-1)^n. - Gary W. Adamson, Jun 15 2003
Form the 4-node graph with matrix A = [1,1,1,1; 1,1,1,0; 1,1,0,1; 1,0,1,1]. Then this sequence counts the walks of length n from the vertex with degree 5 to one (any) of the other vertices. - Paul Barry, Oct 02 2004
a(n+1) is the binomial transform of A006138. - Paul Barry, May 21 2006
a(n+1) is the diagonal sum of the exponential Riordan array (exp(3x),x). - Paul Barry, Jun 03 2006
Number of paths in the right half-plane from (0,0) to the line x=n-1, consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0). Example: a(3)=10 because we have hh, H, UD, DU, hU, Uh, UU, hD, Dh and DD. - Emeric Deutsch, Sep 03 2007
Equals INVERT transform of A000129. Example: a(5) = 109 = (29, 12, 5, 2, 1) dot (1, 1, 3, 10, 33) = (29 + 12 + 15 + 20 + 33). - Gary W. Adamson, Aug 06 2010
For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 3's along the main diagonal, 1's along the superdiagonal and subdiagonal, and 0's everywhere else. - John M. Campbell, Jul 08 2011
These numbers could also be called "bronze Fibonacci numbers". Indeed, for n >= 1, F(n+1) = ceiling(phi*F(n)), if n is even and F(n+1) = floor(phi*F(n)), if n is odd, where phi is the golden ratio; analogously, for Pell numbers (A000129), or "silver Fibonacci numbers", P(n+1) = ceiling(delta*a(n)), if n is even and P(n+1) = floor(delta*a(n)), if n is odd, where delta = delta_S = 1 + sqrt(2) is the silver ratio. Here, for n >= 1, we have a(n+1) = ceiling(c*a(n)), if n is even and a(n+1) = floor(c*a(n)), if n is odd, where c = (3 + sqrt(13))/2 is the bronze ratio (cf. comment in A098316). - Vladimir Shevelev, Feb 23 2013
Let p(n,x) denote the Fibonacci polynomial, defined by p(1,x) = 1, p(2,x) = x, p(n,x) = x*p(n-1,x) + p(n-2,x). Let q(n,x) be the numerator polynomial of the rational function p(n, x + 1 + 1/x). Then q(n,1) = a(n). - Clark Kimberling, Nov 04 2013
The (1,1)-entry of the matrix A^n where A = [0,1,0; 1,2,1; 1,1,2]. - David Neil McGrath, Jul 18 2014
a(n+1) counts closed walks on K2, containing three loops on the other vertex. Equivalently the (1,1)-entry of A^(n+1) where the adjacency matrix of digraph is A = (0,1; 1,3). - David Neil McGrath, Oct 29 2014
For n >= 1, a(n) equals the number of words of length n-1 on alphabet {0,1,2,3} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
With offset 1 is the INVERTi transform of A001076. - Gary W. Adamson, Jul 24 2015
Apart from the initial 0, this is the p-INVERT transform of (1,0,1,0,1,0,...) for p(S) = 1 - 3 S. See A291219. - Clark Kimberling, Sep 02 2017
From Rogério Serôdio, Mar 30 2018: (Start)
This is a divisibility sequence (i.e., if n|m then a(n)|a(m)).
gcd(a(n),a(n+k)) = a(gcd(n, k)) for all positive integers n and k. (End)
Numbers of straight-chain fatty acids involving oxo and/or hydroxy groups, if cis-/trans isomerism and stereoisomerism are neglected. - Stefan Schuster, Apr 04 2018
Number of 3-compositions of n restricted to odd parts (and allowed zeros); see Hopkins & Ouvry reference. - Brian Hopkins, Aug 17 2020
From Michael A. Allen, Jan 25 2023: (Start)
Also called the 3-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 3 kinds of squares available. (End)
a(n) is the number of compositions of n when there are P(k) sorts of parts k, with k,n >= 1, P(k) = A000129(k) is the k-th Pell number (see example below). - Enrique Navarrete, Dec 15 2023
REFERENCES
H. L. Abbott and D. Hanson, A lattice path problem, Ars Combin., 6 (1978), 163-178.
A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 128.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
L.-N. Machaut, Query 3436, L'Intermédiaire des Mathématiciens, 16 (1909), 62-63. - N. J. A. Sloane, Mar 08 2022
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from T. D. Noe)
H. L. Abbott and D. Hanson, A lattice path problem, Ars Combin., 6 (1978), 163-178. (Annotated scanned copy)
Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
Dorin Andrica, Ovidiu Bagdasar, and George Cătălin Tųrcąs, On some new results for the generalised Lucas sequences, An. Şt. Univ. Ovidius Constanţa (Romania, 2021) Vol. 29, No. 1, 17-36.
Ayoub B. Ayoub, Fibonacci-like sequences and Pell equations, The College Mathematics Journal, Vol. 38 (2007), pp. 49-53.
D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, Example 8.
Henrique F. da Cruz, Ilda Inácio, and Rogério Serôdio, Convertible subspaces that arise from different numberings of the vertices of a graph, Ars Mathematica Contemporanea (2019) Vol. 16, No. 2, 473-486.
Colin Defant, Meeting Covered Elements in nu-Tamari Lattices, arXiv:2104.03890 [math.CO], 2021.
Sergio Falcon, On The Generating Functions of the Powers of the K-Fibonacci Numbers, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675.
Sergio Falcon, The k-Fibonacci difference sequences, Chaos, Solitons & Fractals, Volume 87, June 2016, Pages 153-157.
M. C. Firengiz and A. Dil, Generalized Euler-Seidel method for second order recurrence relations, Notes on Number Theory and Discrete Mathematics, Vol. 20, 2014, No. 4, 21-32.
Juan B. Gil and Aaron Worley, Generalized metallic means, arXiv:1901.02619 [math.NT], 2019.
Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
A. F. Horadam, Generating identities for generalized Fibonacci and Lucas triples, Fib. Quart., 15 (1977), 289-292.
Haruo Hosoya, What Can Mathematical Chemistry Contribute to the Development of Mathematics?, HYLE--International Journal for Philosophy of Chemistry, Vol. 19, No.1 (2013), pp. 87-105.
Milan Janjic, Hessenberg Matrices and Integer Sequences , J. Int. Seq. 13 (2010) # 10.7.8, section 3.
Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
Tanya Khovanova, Recursive Sequences
W. F. Klostermeyer, M. E. Mays, L. Soltes and G. Trapp, A Pascal rhombus, Fibonacci Quarterly, 35 (1976), 318-328.
Pablo Lam-Estrada, Myriam Rosalía Maldonado-Ramírez, José Luis López-Bonilla, and Fausto Jarquín-Zárate, The sequences of Fibonacci and Lucas for each real quadratic fields Q(Sqrt(d)), arXiv:1904.13002 [math.NT], 2019.
Prabha Sivaraman Nair and Rejikumar Karunakaran, On k-Fibonacci Brousseau Sums, J. Int. Seq. (2024) Art. No. 24.6.4. See p. 2.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
S. Schuster, M. Fichtner and S. Sasso, Use of Fibonacci numbers in lipidomics - Enumerating various classes of fatty acids, Sci. Rep., 7 (2017) 39821.
FORMULA
G.f.: x/(1 - 3*x - x^2).
From Benoit Cloitre, Jun 14 2003
a(3*n) = 2*A041019(5*n-1), a(3*n+1) = A041019(5*n), a(3*n+2) = A041019(5*n+3).
a(2*n) = 3*A004190(n-1); a(3*n) = 10*A041613(n-1) for n >= 1. (End)
From Gary W. Adamson, Jun 15 2003: (Start)
a(n-1) + a(n+1) = A006497(n).
A006497(n)^2 - 13*a(n)^2 = 4(-1)^n. (End)
a(n) = U(n-1, (3/2)i)(-i)^(n-1), i^2 = -1. - Paul Barry, Nov 19 2003
a(n) = Sum_{k=0..n-1} binomial(n-k-1,k)*3^(n-2*k-1). - Paul Barry, Oct 02 2004
a(n) = F(n, 3), the n-th Fibonacci polynomial evaluated at x=3.
Let M = {{0, 1}, {1, 3}}, v[1] = {0, 1}, v[n] = M.v[n - 1]; then a(n) = Abs[v[n][[1]]]. - Roger L. Bagula, May 29 2005 [Or a(n) = [M^(n+1)]_{1,1}. - L. Edson Jeffery, Aug 27 2013
From Paul Barry, May 21 2006: (Start)
a(n+1) = Sum_{k=0..n} Sum_{j=0..n-k} C(k,j)*C(n-j,k)*2^(k-j).
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(k,j)*C(n-j,k)*2^(n-j-k).
a(n+1) = Sum_{k=0..floor(n/2)} C(n-k,k)*3^(n-2*k).
a(n) = Sum_{k=0..n} C(k,n-k)*3^(2*k-n). (End)
E.g.f.: exp(3*x/2)*sinh(sqrt(13)*x/2)/(sqrt(13)/2). - Paul Barry, Jun 03 2006
a(n) = (ap^n - am^n)/(ap - am), with ap = (3 + sqrt(13))/2, am = (3 - sqrt(13))/2.
Let C = (3 + sqrt(13))/2 = exp arcsinh(3/2) = 3.3027756377... Then C^n, n > 0 = a(n)*(1/C) + a(n+1). Let X = the 2 X 2 matrix [0, 1; 1, 3]. Then X^n = [a(n-1), a(n); a(n), a(n+1)]. - Gary W. Adamson, Dec 21 2007
1/3 = 3/(1*10) + 3/(3*33) + 3/(10*109) + 3/(33*360) + 3/(109*1189) + ... . - Gary W. Adamson, Mar 16 2008
a(n) = ((3 + sqrt(13))^n - (3 - sqrt(13))^n)/(2^n*sqrt(13)). - Al Hakanson (hawkuu(AT)gmail.com), Jan 12 2009
a(p) == 13^((p-1)/2) mod p, for odd primes p. - Gary W. Adamson, Feb 22 2009
From Johannes W. Meijer, Jun 12 2010: (Start)
Limit_{k->oo} a(n+k)/a(k) = (A006497(n) + a(n)*sqrt(13))/2.
Limit_{n->oo} A006497(n)/a(n) = sqrt(13). (End)
Sum_{k>=1} (-1)^(k-1)/(a(k)*a(k+1)) = (sqrt(13)-3)/2. - Vladimir Shevelev, Feb 23 2013
From Vladimir Shevelev, Feb 24 2013: (Start)
(1) Expression a(n+1) via a(n): a(n+1) = (3*a(n) + sqrt(13*a^2(n) + 4*(-1)^n)/2;
(2) a^2(n+1) - a(n)*a(n+2) = (-1)^n;
(3) Sum_{k=1..n} (-1)^(k-1)/(a(k)*a(k+1)) = a(n)/a(n+1);
(4) a(n)/a(n+1) = (sqrt(13)-3)/2 + r(n), where |r(n)| < 1/(a(n+1)*a(n+2)). (End)
a(n) = sqrt(13*(A006497(n))^2 + (-1)^(n-1)*52)/13. - Vladimir Shevelev, Mar 13 2013
Sum_{n >= 1} 1/( a(2*n) + 1/a(2*n) ) = 1/3; Sum_{n >= 1} 1/( a(2*n + 1) - 1/a(2*n + 1) ) = 1/9. - Peter Bala, Mar 26 2015
From Rogério Serôdio, Mar 30 2018: (Start)
Some properties:
(1) a(n)*a(n+1) = 3*Sum_{k=1..n} a(k)^2;
(2) a(n)^2 + a(n+1)^2 = a(2*n+1);
(3) a(n)^2 - a(n-2)^2 = 3*a(n-1)*(a(n) + a(n-2));
(4) a(m*(p+1)) = a(m*p)*a(m+1) + a(m*p-1)*a(m);
(5) a(n-k)*a(n+k) = a(n)^2 + (-1)^(n+k+1)*a(k)^2;
(6) a(2*n) = a(n)*(3*a(n) + 2*a(n-1));
(7) 3*Sum_{k=2..n+1} a(k)*a(k-1) is equal to a(n+1)^2 if n odd, and is equal to a(n+1)^2 - 1 if n is even;
(8) a(n) - a(n-2*k+1) = alpha(k)*a(n-2*k+1) + a(n-4*k+2), where alpha(k) = (ap^(2*k-1) + am^(2*k-1), with ap = (3 + sqrt(13))/2, am = (3 - sqrt(13))/2;
(9) 131|Sum_{k=n..n+9} a(k), for all positive n. (End)
From Kai Wang, Feb 10 2020: (Start)
a(n)^2 - a(n+r)*a(n-r) = (-1)^(n-r)*a(r)^2 - Catalan's identity.
arctan(1/a(2n)) - arctan(1/a(2n+2)) = arctan(a(2)/a(2n+1)).
arctan(1/a(2n)) = Sum_{m>=n} arctan(a(2)/a(2m+1)).
The same formula holds for Fibonacci numbers and Pell numbers. (End)
a(n+2) = 3^(n+1) + Sum_{k=0..n} a(k)*3^(n-k). - Greg Dresden and Gavron Campbell, Feb 22 2022
G.f. = 1/(1-Sum_{k>=1} P(k)*x^k), P(k)=A000129(k) (with a(0)=1). - Enrique Navarrete, Dec 17 2023
G.f.: x/(1 - 3*x - x^2) = Sum_{n >= 0} x^(n+1) *( Product_{k = 1..n} (m*k + 3 - m + x)/(1 + m*k*x) ) for arbitrary m (a telescoping series). - Peter Bala, May 08 2024
EXAMPLE
From Enrique Navarrete, Dec 15 2023: (Start)
From the comment on compositions with Pell number of parts, A000129(k), there are A000129(1)=1 type of 1, A000129(2)=2 types of 2, A000129(3)=5 types of 3, A000129(4)=12 types of 4, A000129(5)=29 types of 5 and A000129(6)=70 types of 6.
The following table gives the number of compositions of n=6:
Composition, number of such compositions, number of compositions of this type:
6, 1, 70;
5+1, 2, 58;
4+2, 2, 48;
3+3, 1, 25;
4+1+1, 3, 36;
3+2+1, 6, 60;
2+2+2, 1, 8;
3+1+1+1, 4, 20;
2+2+1+1, 6, 24;
2+1+1+1+1, 5, 10;
1+1+1+1+1+1, 1, 1;
for a total of a(6)=360 compositions of n=6. (End).
MAPLE
a[0]:=0: a[1]:=1: for n from 2 to 35 do a[n]:= 3*a[n-1]+a[n-2] end do: seq(a[n], n=0..30); # Emeric Deutsch, Sep 03 2007
A006190:=-1/(-1+3*z+z**2); # Simon Plouffe in his 1992 dissertation, without the leading 0
seq(combinat[fibonacci](n, 3), n=0..30); # R. J. Mathar, Dec 07 2011
MATHEMATICA
a[n_] := (MatrixPower[{{1, 3}, {1, 2}}, n].{{1}, {1}})[[2, 1]]; Table[ a[n], {n, -1, 24}] (* Robert G. Wilson v, Jan 13 2005 *)
LinearRecurrence[{3, 1}, {0, 1}, 30] (* or *) CoefficientList[Series[x/ (1-3x-x^2), {x, 0, 30}], x] (* Harvey P. Dale, Apr 20 2011 *)
Table[If[n==0, a1=1; a0=0, a2=a1; a1=a0; a0=3*a1+a2], {n, 0, 30}] (* Jean-François Alcover, Apr 30 2013 *)
Table[Fibonacci[n, 3], {n, 0, 30}] (* Vladimir Reshetnikov, May 08 2016 *)
PROG
(PARI) a(n)=if(n<1, 0, contfracpnqn(vector(n, i, 2+(i>1)))[2, 1])
(PARI) a(n)=([1, 3; 1, 2]^n)[2, 1] \\ Charles R Greathouse IV, Mar 06 2014
(Sage) [lucas_number1(n, 3, -1) for n in range(0, 30)] # Zerinvary Lajos, Apr 22 2009
(Magma)[ n eq 1 select 0 else n eq 2 select 1 else 3*Self(n-1)+Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Aug 19 2011
(Haskell)
a006190 n = a006190_list !! n
a006190_list = 0 : 1 : zipWith (+) (map (* 3) $ tail a006190_list) a006190_list
-- Reinhard Zumkeller, Feb 19 2011
(PARI) concat([0], Vec(x/(1-3*x-x^2)+O(x^30))) \\ Joerg Arndt, Apr 30 2013
(GAP) a:=[0, 1];; for n in [3..30] do a[n]:=3*a[n-1]+a[n-2]; od; a; # Muniru A Asiru, Mar 31 2018
CROSSREFS
Row sums of Pascal's rhombus (A059317). Also row sums of triangle A054456(n, m).
Sequences with g.f. 1/(1-k*x-x^2) or x/(1-k*x-x^2): A000045 (k=1), A000129 (k=2), this sequence (k=3), A001076 (k=4), A052918 (k=5), A005668 (k=6), A054413 (k=7), A041025 (k=8), A099371 (k=9), A041041 (k=10), A049666 (k=11), A041061 (k=12), A140455 (k=13), A041085 (k=14), A154597 (k=15), A041113 (k=16), A178765 (k=17), A041145 (k=18), A243399 (k=19), A041181 (k=20).
Cf. A006497, A052906, A175182 (Pisano periods), A201001 (prime subsequence), A092936 (squares).
Cf. A243399.
KEYWORD
nonn,easy,nice
EXTENSIONS
Second formula corrected by Johannes W. Meijer, Jun 02 2010
STATUS
approved
Chebyshev polynomials S(n,11) + S(n-1,11) with Diophantine property.
+10
12
1, 12, 131, 1429, 15588, 170039, 1854841, 20233212, 220710491, 2407582189, 26262693588, 286482047279, 3125039826481, 34088956044012, 371853476657651, 4056299287190149, 44247438682433988, 482665526219583719, 5265073349732986921, 57433141320843272412
OFFSET
0,2
COMMENTS
All positive integer solutions of Pell equation (3*a(n))^2 - 13*b(n)^2 = -4 together with b(n)=A078922(n+1), n>=0.
LINKS
Andersen, K., Carbone, L. and Penta, D., Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
Sergio Falcon, Relationships between Some k-Fibonacci Sequences, Applied Mathematics, 2014, 5, 2226-2234.
Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.
Tanya Khovanova, Recursive Sequences
Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16.
Eric Weisstein's World of Mathematics, Fibonacci Polynomial
H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
FORMULA
a(n) = S(n, 11) + S(n-1, 11) = S(2*n, sqrt(13)), with S(n, x)=U(n, x/2) Chebyshev's polynomials of the 2nd kind, A049310. S(-1, x) = 0 = U(-1, x).
a(n) = (-2/3)*i*((-1)^n)*T(2*n+1, 3*i/2) with the imaginary unit i and Chebyshev's polynomials of the first kind. See the T-triangle A053120.
G.f.: (1+x)/(1-11*x+x^2).
a(n) = L(n,-11)*(-1)^n, where L is defined as in A108299; see also A078922 for L(n,+11). - Reinhard Zumkeller, Jun 01 2005
a(n) = 11*a(n-1) - a(n-2) with a(0)=1 and a(1)=12. - Philippe Deléham, Nov 17 2008
From Peter Bala, Mar 22 2015: (Start)
The aerated sequence (b(n))n>=1 = [1, 0, 12, 0, 131, 0, 1429, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -9, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials.
b(n) = 1/2*( (-1)^n - 1 )*F(n,3) + 1/3*( 1 + (-1)^(n+1) )*F(n+1,3), where F(n,x) is the n-th Fibonacci polynomial. The o.g.f. is x*(1 + x^2)/(1 - 11*x^2 + x^4).
Exp( Sum_{n >= 1} 6*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 6*A006190(n)*x^n.
Exp( Sum_{n >= 1} (-6)*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 6*A006190(n)*(-x)^n. Cf. A002315, A004146, A113224 and A192425. (End)
a(n) = A006497(2n+1)/3. - Adam Mohamed, Aug 22 2024
EXAMPLE
All positive solutions to the Pell equation x^2 - 13*y^2 = -4 are (3=3*1,1), (36=3*12,10), (393=3*131,109), (4287=3*1429,1189 ), ...
MATHEMATICA
CoefficientList[Series[(1 + x) / (1 - 11 x + x^2), {x, 0, 33}], x] (* Vincenzo Librandi, Mar 22 2015 *)
PROG
(Sage) [(lucas_number2(n, 11, 1)-lucas_number2(n-1, 11, 1))/9 for n in range(1, 19)] # Zerinvary Lajos, Nov 10 2009
(PARI) Vec((1+x)/(1-11*x+x^2) + O(x^30)) \\ Michel Marcus, Mar 22 2015
(Magma) I:=[1, 12]; [n le 2 select I[n] else 11*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 31 2004
STATUS
approved
A Chebyshev or generalized Fibonacci sequence.
+10
9
2, 11, 119, 1298, 14159, 154451, 1684802, 18378371, 200477279, 2186871698, 23855111399, 260219353691, 2838557779202, 30963916217531, 337764520613639, 3684445810532498, 40191139395243839, 438418087537149731, 4782407823513403202, 52168067971110285491, 569066339858699737199
OFFSET
0,1
COMMENTS
From Klaus Purath, Sep 25 2024: (Start)
a(n) = (t(i+3n) - t(i))/(t(i+2n) - t(i+n)) - 1 for n >= 1, where (t) is any sequence satisfying t(i) = 12t(i-1) - 12t(i-2) + t(i-3) or t(i) = 11t(i-1) - t(i-2) without regard to initial values and including this sequence itself, as long as t(i+2n) - t(i+n) != 0 for integer i.
a(n) = (t(i+3n) + t(i))/(t(i+2n) + t(i+n)) + 1 for i >= 0, n >= 1, where (t) is any sequence satisfying t(i) = 10t(i-1) + 10t(i-2) - t(i-3) or t(i) = 11t(i-1) - t(i-2) without regard to initial values and including this sequence itself, as long as t(i+2n) + t(i+n) != 0.
a(n) = (t(i-n) + t(i+n))/t(i) for i >= n >= 0, where (t) is any recurrence of the form (11,-1) including this sequence itself, as long as t(i) != 0.
a(n) = t(n) - t(n-1) = (t(n+1) - t(n-2))/12, where (t) is any third order recurrence with constant coefficients (12,-12,1) and initial values t(0) = x, t(1) = x + 2, t(2) = x + 13 for integer x.
a(n) = t(n-1) + t(n) = (t(n-2) + t(n+1))/10, where (t) is any third order recurrence with constant coefficients (10,10,-1) and initial values t(0) = x, t(1) = 2 - x, t(2) = x + 9 for integer x. (End)
LINKS
Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
P. Bhadouria, D. Jhala, and B. Singh, Binomial Transforms of the k-Lucas Sequences and its Properties, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92; sequence R_3.
S. Falcon, Relationships between Some k-Fibonacci Sequences, Applied Mathematics 5 (2014), 2226-2234.
Tanya Khovanova, Recursive Sequences
FORMULA
a(n) = S(n, 11) - S(n-2, 11) = 2*T(n, 11/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 11)=A004190(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, case. See A049310 and A053120.
G.f.: (2-11*x)/(1-11*x+x^2).
a(n) = ap^n + am^n, with ap := (11+sqrt(117))/2 and am := (11-sqrt(117))/2.
a(n) = sqrt(4+117*A004190(n-1)^2), n>=1.
a(n) = a(-n). - Michael Somos, Apr 25 2003
E.g.f.: 2*exp(11*x/2)*cosh(3*sqrt(13)*x/2). - Stefano Spezia, Aug 07 2024
From Klaus Purath, Sep 25 2024: (Start)
a(n) = (a(n-1)*a(n-2) + 1287)/a(n-3) for integer n.
a(n+1)^2 - a(n)*a(n+2) = -117 for integer n. (End)
EXAMPLE
G.f. = 2 + 11*x +119*x^2 + 1298*x^3 + 14159*x^4 + 154451*x^5 + ...
MATHEMATICA
a[0] = 2; a[1] = 11; a[n_] := 11a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 17}] (* Robert G. Wilson v, Jan 30 2004 *)
a[ n_] := 2 ChebyshevT[ n, 11/2]; (* Michael Somos, May 28 2014 *)
LinearRecurrence[{11, -1}, {2, 11}, 30] (* Harvey P. Dale, Sep 13 2024 *)
PROG
(PARI) {a(n) = subst( poltchebi(n), x, 11/2) * 2};
(PARI) {a(n) = 2 * poltchebyshev(n, 1, 11/2)}; /* Michael Somos, May 28 2014 */
(PARI) Vec((2-11*x)/(1-11*x+x^2) + O(x^40)) \\ Michel Marcus, Feb 18 2016
(Sage) [lucas_number2(n, 11, 1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 31 2002
STATUS
approved
A Chebyshev S-sequence with Diophantine property.
+10
9
1, 13, 168, 2171, 28055, 362544, 4685017, 60542677, 782369784, 10110264515, 130651068911, 1688353631328, 21817946138353, 281944946167261, 3643466354036040, 47083117656301259, 608437063177880327
OFFSET
0,2
COMMENTS
a(n) gives the general (positive integer) solution of the Pell equation b^2 - 165*a^2 = +4 with companion sequence b(n)=A078363(n+1), n >= 0.
This is the m=15 member of the m-family of sequences S(n,m-2) = S(2*n+1,sqrt(m))/sqrt(m). The m=4..14 (nonnegative) sequences are: A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190 and A004191. The m=1..3 (signed) sequences are A049347, A056594, A010892.
For positive n, a(n) equals the permanent of the tridiagonal matrix of order n with 13's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,12}. - Milan Janjic, Jan 23 2015
LINKS
A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case a=0,b=1; p=13, q=-1.
M. Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
Tanya Khovanova, Recursive Sequences
W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq.(44), lhs, m=15.
FORMULA
a(n) = 13*a(n-1) - a(n-2), n >= 1; a(-1)=0, a(0)=1.
a(n) = S(2*n+1, sqrt(15))/sqrt(15) = S(n, 13), where S(n, x) = U(n, x/2), Chebyshev polynomials of the 2nd kind, A049310.
a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap = (13+sqrt(165))/2 and am = (13-sqrt(165))/2.
G.f.: 1/(1 - 13*x + x^2).
a(n) = Sum_{k=0..n} A101950(n,k)*12^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = (1/11)*(11 + sqrt(165)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = (1/26)*(11 + sqrt(165)). - Peter Bala, Dec 23 2012
For n >= 1, a(n) = U(n-1,13/2), where U(k,x) represents Chebyshev polynomial of the second order.
a(n) = sqrt((A078363(n+1)^2 - 4)/165), n>=0, (Pell equation d=165, +4).
MATHEMATICA
CoefficientList[Series[1/(1 - 13 x + x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Dec 24 2012 *)
LinearRecurrence[{13, -1}, {1, 13}, 20] (* Harvey P. Dale, Feb 07 2019 *)
PROG
(Sage) [lucas_number1(n, 13, 1) for n in range(1, 20)] # Zerinvary Lajos, Jun 25 2008
(Magma) I:=[1, 13, 168]; [n le 3 select I[n] else 13*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012
(PARI) my(x='x+O('x^20)); Vec(1/(1-13*x+x^2)) \\ G. C. Greubel, May 25 2019
(GAP) a:=[1, 13, 168];; for n in [4..20] do a[n]:=13*a[n-1]-a[n-2]; od; a; # G. C. Greubel, May 25 2019
CROSSREFS
Cf. A078363.
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 29 2002
STATUS
approved
A Chebyshev S-sequence with Diophantine property.
+10
7
1, 15, 224, 3345, 49951, 745920, 11138849, 166336815, 2483913376, 37092363825, 553901543999, 8271430796160, 123517560398401, 1844491975179855, 27543862067299424, 411313439034311505
OFFSET
0,2
COMMENTS
a(n) gives the general (positive integer) solution of the Pell equation b^2 - 221*a^2 = +4 with companion sequence b(n)=A078365(n+1), n>=0.
This is the m=17 member of the m-family of sequences S(n,m-2) = S(2*n+1,sqrt(m))/sqrt(m). The m=4..16 (nonnegative) sequences are: A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190, A004191, A078362 and A007655. The m=1..3 (signed) sequences are A049347, A056594, A010892.
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 15's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=2, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,14}. - Milan Janjic, Jan 23 2015
LINKS
FORMULA
a(n) = 15*a(n-1) - a(n-2), n>= 1; a(-1)=0, a(0)=1.
a(n) = S(2*n+1, sqrt(17))/sqrt(17) = S(n, 15); S(n, x) := U(n, x/2), Chebyshev polynomials of the 2nd kind, A049310.
a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap = (15+sqrt(221))/2 and am = (15-sqrt(221))/2.
G.f.: 1/(1 - 15*x + x^2). - Philippe Deléham, Nov 17 2008
a(n) = Sum_{k=0..n} A101950(n,k)*14^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/13*(13 + sqrt(221)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 1/30*(13 + sqrt(221)). - Peter Bala, Dec 23 2012
For n>=1, a(n) = U(n-1,15/2), where U(k,x) is Chebyshev polynomial of the second kind. - Milan Janjic, Jan 23 2015
MATHEMATICA
LinearRecurrence[{15, -1}, {1, 15}, 30] (* Harvey P. Dale, Oct 16 2011 *)
PROG
(Sage) [lucas_number1(n, 15, 1) for n in range(1, 20)] # Zerinvary Lajos, Jun 25 2008
CROSSREFS
a(n) = sqrt((A078365(n+1)^2 - 4)/221), n>=0, (Pell equation d=221, +4).
Cf. A077428, A078355 (Pell +4 equations).
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 29 2002
STATUS
approved
A Chebyshev S-sequence with Diophantine property.
+10
7
1, 17, 288, 4879, 82655, 1400256, 23721697, 401868593, 6808044384, 115334885935, 1953885016511, 33100710394752, 560758191694273, 9499788548407889, 160935647131239840, 2726406212682669391, 46187969968474139807, 782469083251377707328, 13255786445304946884769
OFFSET
0,2
COMMENTS
a(n) gives the general (positive integer) solution of the Pell equation b^2 - 285*a^2 = +4 with companion sequence b(n)=A078367(n+1), n >= 0.
This is the m=19 member of the m-family of sequences S(n,m-2) = S(2*n+1,sqrt(m))/sqrt(m). The m=4..18 (nonnegative) sequences are: A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190, A004191, A078362, A007655, A078364 and A077412. The m=1..3 (signed) sequences are A049347, A056594, A010892.
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 17's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n >= 2, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,16}. - Milan Janjic, Jan 23 2015
LINKS
A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case a=0,b=1; p=17, q=-1.
Tanya Khovanova, Recursive Sequences
Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq.(44), lhs, m=19.
FORMULA
a(n) = 17*a(n-1) - a(n-2), n >= 1; a(-1)=0, a(0)=1.
a(n) = S(2*n+1, sqrt(19))/sqrt(19) = S(n, 17), where S(n, x) = U(n, x/2), Chebyshev polynomials of the 2nd kind, A049310.
a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap = (17+sqrt(285))/2 and am = (17-sqrt(285))/2.
G.f.: 1/(1-17*x+x^2).
a(n) = Sum_{k=0..n} A101950(n,k)*16^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = (1/15)*(15 + sqrt(285)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = (1/34)*(15 + sqrt(285)). - Peter Bala, Dec 23 2012
For n >= 1, a(n) = U(n-1,13/2), where U(k,x) represents Chebyshev polynomial of the second order. - Milan Janjic, Jan 23 2015
a(n) = sqrt((A078367(n+1)^2 - 4)/285), n>=0, (Pell equation d=285, +4).
E.g.f.: exp(17*x/2)*(sqrt(285)*cosh(sqrt(285)*x/2) + 17*sinh(sqrt(285)*x/2))/sqrt(285). - Stefano Spezia, Aug 19 2023
MATHEMATICA
CoefficientList[Series[1/(1 - 17 x + x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Dec 24 2012 *)
LinearRecurrence[{17, -1}, {1, 17}, 20] (* Harvey P. Dale, Aug 02 2018 *)
PROG
(Sage) [lucas_number1(n, 17, 1) for n in range(1, 20)] # Zerinvary Lajos, Jun 25 2008
(Magma) I:=[1, 17, 288]; [n le 3 select I[n] else 17*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012
(PARI) my(x='x+O('x^20)); Vec(1/(1-17*x+x^2)) \\ G. C. Greubel, May 25 2019
(GAP) a:=[1, 17, 288];; for n in [4..20] do a[n]:=17*a[n-1]-a[n-2]; od; a; # G. C. Greubel, May 25 2019
CROSSREFS
Cf. A077428, A078355 (Pell +4 equations). Cf. A078367.
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 29 2002
STATUS
approved
Expansion of g.f. 1/(1 - 33*x + x^2).
+10
6
1, 33, 1088, 35871, 1182655, 38991744, 1285544897, 42383989857, 1397386120384, 46071357982815, 1518957427312511, 50079523743330048, 1651105326102579073, 54436396237641779361, 1794749970516076139840, 59172312630792870835359, 1950891566845648661427007
OFFSET
0,2
COMMENTS
A Diophantine property of these numbers: (a(n+1)-a(n-1))^2 - 1085*a(n)^2 = 4.
More generally, for t(m)=(m+sqrt(m^2-4))/2 and u(n)=(t(m)^(n+1)-1/t(m)^(n+1))/(t(m)-1/t(m)), we can verify that (u(n+1)-u(n-1))^2-(m^2-4)*u(n)^2=4.
a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,32}. - Milan Janjic, Jan 26 2015
FORMULA
a(n) = 33*a(n-1)-a(n-2) with a(0)=1, a(1)=33.
a(n) = -a(-n-2) = (t^(n+1)-1/t^(n+1))/(t-1/t), where t=(33+sqrt(1085))/2.
a(n) = sum((-1)^k*binomial(n-k, k)*33^(n-2k), k=0..floor(n/2)).
a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*32^k. - Philippe Deléham, Feb 10 2012
From Peter Bala, Dec 23 2012: (Start)
Product {n >= 0} (1 + 1/a(n)) = 1/31*(31 + sqrt(1085)).
Product {n >= 1} (1 - 1/a(n)) = 1/66*(31 + sqrt(1085)). (End)
E.g.f.: exp(33*x/2)*cosh(sqrt(1085)*x/2) + 33*exp(33*x/2)*sinh(sqrt(1085)*x/2)/sqrt(1085). - Stefano Spezia, Apr 16 2023
MATHEMATICA
LinearRecurrence[{33, -1}, {1, 33}, 17]
PROG
(PARI) Vec(1/(1-33*x+x^2)+O(x^17))
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-1085); S:=[(((33+r)/2)^n-1/((33+r)/2)^n)/r: n in [1..17]]; [Integers()!S[j]: j in [1..#S]];
(Maxima) makelist(sum((-1)^k*binomial(n-k, k)*33^(n-2*k), k, 0, floor(n/2)), n, 0, 16);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Nov 18 2011
STATUS
approved
A Chebyshev S-sequence with Diophantine property.
+10
4
1, 19, 360, 6821, 129239, 2448720, 46396441, 879083659, 16656193080, 315588584861, 5979526919279, 113295422881440, 2146633507828081, 40672741225852099, 770635449783361800, 14601400804658022101
OFFSET
0,2
COMMENTS
a(n) gives the general (positive integer) solution of the Pell equation b^2 - 357*a^2 =+4 with companion sequence b(n)=A078369(n+1), n>=0.
This is the m=21 member of the m-family of sequences S(n,m-2) = S(2*n+1,sqrt(m))/sqrt(m). The m=4..20 (nonnegative) sequences are: A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190, A004191, A078362, A007655, A078364, A077412, A078366 and A049660. The m=1..3 (signed) sequences are A049347, A056594, A010892.
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 19's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=2, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,18}. Milan Janjic, Jan 25 2015
LINKS
FORMULA
a(n) = 19*a(n-1)-a(n-2), n >= 1; a(-1)=0, a(0)=1.
a(n) = (ap^(n+1)-am^(n+1))/(ap-am) with ap = (19+sqrt(357))/2 and am = (19-sqrt(357))/2.
a(n) = S(2*n+1, sqrt(21))/sqrt(21) = S(n, 19); S(n, x) := U(n, x/2), Chebyshev polynomials of the 2nd kind, A049310.
G.f.: 1/(1-19*x+x^2).
a(n) = Sum_{k=0..n} A101950(n,k)*18^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/17*(17 + sqrt(357)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 1/38*(17 + sqrt(357)). - Peter Bala, Dec 23 2012
MATHEMATICA
Join[{a=1, b=19}, Table[c=19*b-a; a=b; b=c, {n, 40}]] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2011 *)
LinearRecurrence[{19, -1}, {1, 19}, 20] (* Harvey P. Dale, Feb 10 2019 *)
PROG
(Sage) [lucas_number1(n, 19, 1) for n in range(1, 20)] # Zerinvary Lajos, Jun 25 2008
CROSSREFS
a(n) = sqrt((A078369(n+1)^2 - 4)/357), n>=0, (Pell equation d=357, +4).
Cf. A077428, A078355 (Pell +4 equations).
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 29 2002
STATUS
approved
Table by antidiagonals of T(n,k)=n*T(n,k-1)-T(n,k-2) starting with T(n,1)=1.
+10
3
1, 1, 1, 0, 2, 1, -1, 3, 3, 1, -1, 4, 8, 4, 1, 0, 5, 21, 15, 5, 1, 1, 6, 55, 56, 24, 6, 1, 1, 7, 144, 209, 115, 35, 7, 1, 0, 8, 377, 780, 551, 204, 48, 8, 1, -1, 9, 987, 2911, 2640, 1189, 329, 63, 9, 1, -1, 10, 2584, 10864, 12649, 6930, 2255, 496, 80, 10, 1, 0, 11, 6765, 40545, 60605, 40391, 15456, 3905, 711, 99, 11, 1, 1, 12
OFFSET
1,5
LINKS
Shmuel T. Klein, Combinatorial Representation of Generalized Fibonacci Numbers, Fib. Quarterly 29 (2) (1991) 124-131, variable U_n^m. [From R. J. Mathar, Feb 19 2010]
FORMULA
T(n, k) = A073133(n, k)-2*A073135(n, k-2).
T(n, k) = Sum_{j=0..k-1} A049310(k-1, j)*n^j.
EXAMPLE
Rows start:
1, 1, 0, -1, -1, 0, 1, ...;
1, 2, 3, 4, 5, 6, 7, ...;
1, 3, 8, 21, 55, 144, 377, ...;
1, 4, 15, 56, 209, 780, 2911, ...;
...
PROG
(PARI) T(n, k) = sum(j=0, k-1, A049310(k-1, j)*n^j) \\ Jason Yuen, Aug 20 2024
CROSSREFS
Rows include A010892, A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190. Columns include (with some gaps) A000012, A000027, A005563, A057722.
Cf. A094954.
KEYWORD
sign,tabl
AUTHOR
Henry Bottomley, Jul 16 2002
STATUS
approved

Search completed in 0.017 seconds