OFFSET
0,2
COMMENTS
a(2*n+1) with b(2*n+1) := A041024(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation b^2 - 17*a^2 = +1, a(2*n) with b(2*n) := A041024(2*n), n >= 0, give all (positive integer) solutions to Pell equation b^2 - 17*a^2 = -1 (cf. Emerson reference).
Bisection: a(2*n) = T(2*n+1,sqrt(17))/sqrt(17) = A078988(n), n >= 0 and a(2*n+1) = 8*S(n-1,66), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. S(-1,x)=0. See A053120, resp. A049310. - Wolfdieter Lang, Jan 10 2003
Sqrt(17) = 8/2 + 8/65 + 8/(65*4289) + 8/(4289*283009) + ... . - Gary W. Adamson, Dec 26 2007
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 8's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
De Moivre's formula: a(n) = (r^n - s^n)/(r-s), for r > s, gives sequences with integers if r and s are conjugates. With r=4+sqrt(17) and s=4-sqrt(17), a(n+1)/a(n) converges to r=4+sqrt(17). - Sture Sjöstedt, Nov 11 2011
a(n) equals the number of words of length n on alphabet {0,1,...,8} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, Feb 21 2023: (Start)
Also called the 8-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 8 kinds of squares available. (End)
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, Example 8.
E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242, Thm. 1, p. 233.
Sergio Falcón and Ángel Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos, Solitons & Fractals 2007; 33(1): 38-49.
S. Falcón and Á. Plaza, On k-Fibonacci sequences and polynomials and their derivatives, Chaos, Solitons & Fractals (2007).
Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (8,1).
FORMULA
G.f.: 1/(1 - 8*x - x^2).
a(n) = ((-i)^n)*S(n, 8*i), with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind and i^2 = -1. See A049310.
a(n) = F(n, 8), the n-th Fibonacci polynomial evaluated at x=8. - T. D. Noe, Jan 19 2006
From Sergio Falcon, Sep 24 2007: (Start)
a(n) = ((4 + sqrt(17))^n - (4 - sqrt(17))^n)/(2*sqrt(17));
a(n) = Sum_{i=0..floor((n-1)/2)} binomial(n-1-i,i)*8^(n-1-2i). (End)
Let T be the 2 X 2 matrix [0, 1; 1, 8]. Then T^n * [1, 0] = [a(n-2), a(n-1)]. - Gary W. Adamson, Dec 26 2007
a(n) = 8*a(n-1) + a(n-2), n > 1; a(0)=1, a(1)=8. - Philippe Deléham, Nov 20 2008
a(p) == ((p-1)/2)) (mod p) for odd primes p. - Gary W. Adamson, Feb 22 2009
Sum_{n>=0} (-1)^n/(a(n)*a(n+1)) = sqrt(17) - 4. - Vladimir Shevelev, Feb 23 2013
G.f.: x/(1 - 8*x - x^2) = Sum_{n >= 0} x^n *( Product_{k = 1..n} (m*k + 8 - m + x)/(1 + m*k*x) ) for arbitrary m (a telescoping series). - Peter Bala, May 08 2024
MATHEMATICA
CoefficientList[Series[1/(-z^2 - 8 z + 1), {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 23 2011 *)
Denominator[Convergents[Sqrt[17], 30]] (* Harvey P. Dale, Aug 15 2011 *)
LinearRecurrence[{8, 1}, {1, 8}, 50] (* Sture Sjöstedt, Nov 11 2011 *)
PROG
(Sage) [lucas_number1(n, 8, -1) for n in range(1, 20)] # Zerinvary Lajos, Apr 25 2009
(Magma) I:=[1, 8]; [n le 2 select I[n] else 8*Self(n-1)+Self(n-2): n in [1..25]]; // Vincenzo Librandi, Feb 23 2013
(PARI) Vec(1/(1-8*x-x^2)+O(x^99)) \\ Charles R Greathouse IV, Dec 09 2014
CROSSREFS
Cf. A099369 (squares).
KEYWORD
nonn,cofr,frac,easy
AUTHOR
STATUS
approved