[go: up one dir, main page]

login
A041113
Denominators of continued fraction convergents to sqrt(65).
11
1, 16, 257, 4128, 66305, 1065008, 17106433, 274767936, 4413393409, 70889062480, 1138638393089, 18289103351904, 293764292023553, 4718517775728752, 75790048703683585, 1217359297034666112, 19553538801258341377, 314073980117168128144, 5044737220675948391681, 81029869510932342395040
OFFSET
0,2
COMMENTS
Sqrt(65) = 16/2 + 16/257 + 16/(257*66305) + 16/(66305*17106433) + ... - Gary W. Adamson, Jun 13 2008
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 16's along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
a(n) equals the number of words of length n on alphabet {0,1,...,16} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, May 01 2023: (Start)
Also called the 16-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 16 kinds of squares available. (End)
LINKS
FORMULA
a(n) = Fibonacci(n+1, 16). - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 21 2008: (Start)
a(n) = 16*a(n-1) + a(n-2) for n > 1; a(0) = 1, a(1) = 16.
G.f.: 1/(1 - 16*x - x^2). (End)
a(n) = ((8+sqrt(65))^(n+1) - (8-sqrt(65))^(n+1))/(2*sqrt(65)). - Rolf Pleisch, May 14 2011
E.g.f.: exp(8*x)*(cosh(sqrt(65)*x) + 8*sinh(sqrt(65)*x)/sqrt(65)). - Stefano Spezia, Oct 28 2022
MATHEMATICA
Denominator[Convergents[Sqrt[65], 30]] (* Vincenzo Librandi, Dec 11 2013 *)
Fibonacci[Range[30], 16] (* G. C. Greubel, Sep 29 2024 *)
PROG
(Magma) [n le 2 select (16)^(n-1) else 16*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 11 2013
(SageMath)
A041113=BinaryRecurrenceSequence(16, 1, 1, 16)
[A041113(n) for n in range(0, 31)] # G. C. Greubel, Sep 29 2024
CROSSREFS
Row n=16 of A073133, A172236 and A352361 and column k=16 of A157103.
Sequence in context: A223433 A223593 A067223 * A363689 A041482 A320362
KEYWORD
nonn,frac,easy
STATUS
approved