OFFSET
0,2
COMMENTS
Image of 1/(1-3*x) under the mapping g(x) -> g(x/(1+x^2)). - Paul Barry, Jan 16 2005
a(n) is the number of compositions of n into odd parts with three kinds of each part. - John Tyler Rascoe, May 28 2024
LINKS
Robert Israel, Table of n, a(n) for n = 0..1920
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 885
Index entries for linear recurrences with constant coefficients, signature (3,1).
FORMULA
G.f.: (1-x^2)/(1-3*x-x^2).
a(n)+3*a(n+1)-a(n+2)=0, with a(0)=1, a(1)=3, a(2)=9.
a(n) = Sum_{alpha=RootOf(-1+3*_Z+_Z^2)} (-3/13)*(3*alpha - 2)*alpha^(-1-n).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k-1, k)*3^(n-2*k). - Paul Barry, Jan 16 2005
If p(i)=3*(i mod 2) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p(j-i+1), (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise, then, for n>=1, a(n)=det A. - Milan Janjic, May 02 2010
G.f.: G(0)*(1-x^2)/(2-3*x), where G(k)= 1 + 1/(1 - (x*(13*k-9))/( x*(13*k+4) - 6/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 15 2013
a(n) = 3*( ((3+sqrt(13))/2)^n - ((3-sqrt(13))/2)^n )/sqrt(13), for n>=1. - Bogart B. Strauss, Jul 19 2013
E.g.f.: 1 + 6*exp(3*x/2)*sinh(sqrt(13)*x/2)/sqrt(13). - Ilya Gutkovskiy, Nov 11 2016
a(n) = 3*Fibonacci(n, 3) for n > 0, where Fibonacci(n, x) are the Fibonacci polynomials. - G. C. Greubel, Oct 14 2019
MAPLE
spec := [S, {S=Sequence(Prod(Union(Z, Z, Z), Sequence(Prod(Z, Z))))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
# alternative:
f:= gfun:-rectoproc({a(0)=1, a(n)+3*a(n+1)-a(n+2)=0, a(1)=3, a(2)=9}, a(n), remember):
map(f, [$0..50]); # Robert Israel, Nov 11 2016
MATHEMATICA
Table[If[n==0, 1, 3*Fibonacci[n, 3]], {n, 0, 30}] (* G. C. Greubel, Oct 14 2019 *)
PROG
(PARI) Vec((1-x^2)/(1-3*x-x^2) + O(x^40)) \\ Michel Marcus, Nov 11 2016
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x^2)/(1-3*x-x^2) )); // G. C. Greubel, Oct 14 2019
(Sage)
def A052906_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1-x^2)/(1-3*x-x^2)).list()
A052906_list(30) # G. C. Greubel, Oct 14 2019
(GAP) a:=[3, 9];; for n in [3..30] do a[n]:=3*a[n-1]+a[n-2]; od; Concatenation([1], a); # G. C. Greubel, Oct 14 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved