This site is supported by donations to The OEIS Foundation.
Index to OEIS: Section Rea
Index to OEIS: Section Rea
- This is a section of the Index to the OEIS®.
- For further information see the main Index to OEIS page.
- Please read Index: Instructions For Updating Index to OEIS before making changes to this page.
- If you did not find what you were looking for in this Index, you can always search the database for a particular word or phrase.
- Full list of sections:
[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]
reachable configurations on circles: A005787
read n backwards: A004086
rebasing notation b[n]q: see A000695 and the overview in Rebasing notation
Recaman's sequence : sequences related to :
- Recaman's sequence : A005132*, A169632, A210604, A210605
- Recaman's sequence, addition steps: A057165
- Recaman's sequence, condensed version: A119632
- Recaman's sequence, heights: A064288 A064289* A064290 A064291 A064292 A064293 A064294
- Recaman's sequence, quotients and remainders: A065051 A065052
- Recaman's sequence, records for a(n)/n: A064621, A064622
- Recaman's sequence, segments in: A064492 A065038 A065053
- Recaman's sequence, simplified version: A008344 A046901
- Recaman's sequence, steps to hit n: A057167; A064227* and A064228* (records)
- Recaman's sequence, subtraction steps: A057166, A160351
- Recaman's sequence, transforms based on: A064365 A022831, A053461
- Recaman's sequence, two-dimensional versions: A066201 A066202
- Recaman's sequence, variations on (1): A008336 A063733 A063733 A064387 A064387 A064388 A064388 A064389 A064389 A065422
- Recaman's sequence, variations on (2): A066199 A066200 A066203 A066204 A079049 A079051 A079052 A079053 A079406 A091484
- Recaman's sequence, variations on (3): A113880 A117128 A118906 A118907 A123483 A125717 A169748 A169749 A169750 A169751
- Recaman's sequence, variations on (4): A169752 A169755 A228474 A261573 A274647 A274648.
- Recaman's sequence: see also: A064284 A064301 A064369 A064568 A064569 A064970 A065053 A065054 A065055 A065056
reciprocal of n, decimal expansion of: see 1/n
reciprocals of primes: see 1/p
record high values in a sequence {a(i)} occur at indices i such that a(i) > a(j) for all j < i
rectangles, Latin, see Latin squares
recurrence a(2^i+j) ..., sequences related to :
recurrence a(2^i+j) = C*a(j) + D*a(j+1), a(0) = A, a(1) = B for following values of (A B C D): (0 1 1 1) A118977, (1 0 1 1) A151702, (1 1 1 1) A151570, (1 2 1 1) A151571, (0 1 1 2) A151572, (1 0 1 2) A151703, (1 1 1 2) A151573, (1 2 1 2) A151574, (0 1 2 1) A160552, (1 0 2 1) A151704, (1 1 2 1) A151568, (1 2 2 1) A151569, (0 1 2 2) A151705, (1 0 2 2) A151706, (1 1 2 2) A151707, (1 2 2 2) A151708
recurrence, linear, constant coefficients, sequences related to :
recurrences over rings: A005984
recurrences, of the form a(n) = k*a(n - 1) +/- a(n - 2), sequences related to :
- recurrences, of the form a(0) = 2; a(1) = k; a(n) = k*a(n - 1) + a(n - 2): (1) A000032, A002203, A006497, A014448, A087130, A085447, A086902, A086594, A087798, A086927
- recurrences, of the form a(0) = 2; a(1) = k; a(n) = k*a(n - 1) + a(n - 2): (2) A001946, A086928, A088316, A090300, A090301, A090305, A090306, A090307, A090308, A090309
- recurrences, of the form a(0) = 2; a(1) = k; a(n) = k*a(n - 1) + a(n - 2): (3) A090310, A090313, A090314, A090316, A087281, A087287, A089772
- recurrences, of the form a(0) = 2; a(1) = k; a(n) = k*a(n - 1) - a(n - 2): (1) A057079 (and A087204), A007395, A005248, A003500, A003501, A003499, A056854, A086903, A056918, A087799
- recurrences, of the form a(0) = 2; a(1) = k; a(n) = k*a(n - 1) - a(n - 2): (2) A057076, A087800, A078363, A067902, A078365, A090727, A078367, A087215, A078369, A090728
- recurrences, of the form a(0) = 2; a(1) = k; a(n) = k*a(n - 1) - a(n - 2): (3) A090729, A090730, A090731, A090732, A090733, A090247, A090248, A090249, A090251, A087265, A065705, A089775
reduced residue system: A070194
reduced totient function psi: A002322*, A002174*, A002396*, A002616
Reed Kelly sequence: A214551
refactorable numbers: A033950*
refactorable, strongly: A141586
reflection coefficients: A007179
regions , sequences related to :
- regions formed by lines in plane: A000124, A055503
- regions formed by spheres in space: A046127, A014206, A059173, A059174, A059250
- regions in regular polygon: see Poonen-Rubinstein paper
regular connected grpahs, see graphs, regular connected
regular n-gon with all diagonals drawn: see Poonen-Rubinstein paper
regular polyhedra, see: polyhedra, regular
regular polytopes, see: polytopes, regular
regular primes: see primes, regular
regular sequences: A003513
Reisel numbers: see Riesel numbers
- This is a section of the Index to the OEIS®.
- For further information see the main Index to OEIS page.
- Please read Index: Instructions For Updating Index to OEIS before making changes to this page.
- If you did not find what you were looking for in this Index, you can always search the database for a particular word or phrase.
- Full list of sections:
[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]