[go: up one dir, main page]

login
Revision History for A126953 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

newer changes | Showing entries 11-20
Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 3*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + T(n-1,k+1) for k >= 1.
(history; published version)
#10 by G. C. Greubel at Fri Apr 21 23:44:57 EDT 2017
STATUS

editing

proposed

#9 by G. C. Greubel at Fri Apr 21 23:44:47 EDT 2017
LINKS

G. C. Greubel, <a href="/A126953/b126953.txt">Table of n, a(n) for the first 50 rows, flattened</a>

MATHEMATICA

T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];

Table[T[n, k, 3, 0], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 21 2017 *)

STATUS

approved

editing

#8 by N. J. A. Sloane at Sun Sep 08 13:31:01 EDT 2013
COMMENTS

This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1 . Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; ((1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906 . - _Philippe DELEHAM_, Deléham_, Sep 25 2007

FORMULA

Sum_{k, 0<=k<=n}T(n,k)*(-2*k+1)=2^n . - _Philippe DELEHAM_, Deléham_, Mar 25 2007

AUTHOR

_Philippe DELEHAM_, Deléham_, Mar 19 2007

Discussion
Sun Sep 08
13:31
OEIS Server: https://oeis.org/edit/global/1938
#7 by Bruno Berselli at Sun Jun 02 03:20:03 EDT 2013
STATUS

proposed

approved

#6 by Philippe Deléham at Sat Jun 01 20:08:20 EDT 2013
STATUS

editing

proposed

#5 by Philippe Deléham at Sat Jun 01 20:07:46 EDT 2013
COMMENTS

Riordan array (2/(1-6x+sqrt(1-4*x^2)),x*c(x^2)) where c(x)= g.f. of the Catalan numbers A000108. - Philippe Deléham, Jun 01 2013

STATUS

approved

editing

#4 by Russ Cox at Sat Mar 31 10:27:55 EDT 2012
COMMENTS

This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1 . Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; ((1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906 . - _Philippe DELEHAM (kolotoko(AT)wanadoo.fr), _, Sep 25 2007

FORMULA

Sum_{k, 0<=k<=n}T(n,k)*(-2*k+1)=2^n . - _Philippe DELEHAM (kolotoko(AT)wanadoo.fr), _, Mar 25 2007

AUTHOR

_Philippe DELEHAM (kolotoko(AT)wanadoo.fr), _, Mar 19 2007

Discussion
Sat Mar 31
10:27
OEIS Server: https://oeis.org/edit/global/535
#3 by N. J. A. Sloane at Sun Jun 29 03:00:00 EDT 2008
EXAMPLE

Triangle begins :

KEYWORD

nonn,tabl,new

#2 by N. J. A. Sloane at Sat Nov 10 03:00:00 EST 2007
COMMENTS

This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1 . Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; ((1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906 . - Philippe DELEHAM (kolotoko(AT)wanadoo.fr), Sep 25 2007

KEYWORD

nonn,tabl,new

#1 by N. J. A. Sloane at Fri May 11 03:00:00 EDT 2007
NAME

Triangle T(n,k),0<=k<=n, read by rows given by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=3*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+T(n-1,k+1) for k>=1.

DATA

1, 3, 1, 10, 3, 1, 33, 11, 3, 1, 110, 36, 12, 3, 1, 366, 122, 39, 13, 3, 1, 1220, 405, 135, 42, 14, 3, 1, 4065, 1355, 447, 149, 45, 15, 3, 1, 13550, 4512, 1504, 492, 164, 48, 16, 3, 1, 45162, 15054, 5004, 1668, 540, 180, 51, 17, 3, 1

OFFSET

0,2

FORMULA

Sum_{k, 0<=k<=n}T(n,k)=A127359(n) . Sum_{k, k>=0}T(m,k)*T(n,k)=T(m+n,0)=A126931(m+n).

Sum_{k, 0<=k<=n}T(n,k)*(-2*k+1)=2^n . - Philippe DELEHAM (kolotoko(AT)wanadoo.fr), Mar 25 2007

EXAMPLE

Triangle begins :

1;

3, 1;

10, 3, 1;

33, 11, 3, 1;

110, 36, 12, 3, 1;

366, 122, 39, 13, 3, 1;

1220, 405, 135, 42, 14, 3, 1;

4065, 1355, 447, 149, 45, 15, 3, 1;

KEYWORD

nonn,tabl

AUTHOR

Philippe DELEHAM (kolotoko(AT)wanadoo.fr), Mar 19 2007

STATUS

approved