[go: up one dir, main page]

login
A124733
Triangle read by rows: row n is the first row of the matrix M[n]^(n-1), where M[n] is the n X n tridiagonal matrix with main diagonal (2,3,3,...) and super- and subdiagonals (1,1,1,...).
27
1, 2, 1, 5, 5, 1, 15, 21, 8, 1, 51, 86, 46, 11, 1, 188, 355, 235, 80, 14, 1, 731, 1488, 1140, 489, 123, 17, 1, 2950, 6335, 5397, 2730, 875, 175, 20, 1, 12235, 27352, 25256, 14462, 5530, 1420, 236, 23, 1, 51822, 119547, 117582, 74172, 32472, 10026, 2151, 306, 26, 1
OFFSET
1,2
COMMENTS
With a different offset: Triangle T(n,k), 0<=k<=n, read by rows given by : T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=2*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+3*T(n-1,k)+T(n-1,k+1) for k>=1. - Philippe Deléham, Mar 27 2007
Equals A007318*A039599 (when written as lower triangular matrix). - Philippe Deléham, Jun 16 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1 . Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
5^n = (n-th row terms) dot (first n+1 odd integers). Example: 5^4 = 625 = (51, 86, 46, 11, 1) dot (1, 3, 5, 7, 9) = (51 + 258 + 230 + 77 + 9) = 625. [Gary W. Adamson, Jun 13 2011]
FORMULA
Sum_{k=0..n} (-1)^(n-k)*T(n,k) = (-1)^n. - Philippe Deléham, Feb 27 2007
Sum_{k=0..n} T(n,k)*(2*k+1) = 5^n. - Philippe Deléham, Mar 27 2007
T(n,k) = (-1)^(n-k)*(GegenbauerC(n-k,-n+1,3/2) + GegenbauerC(n-k-1,-n+1,3/2)). - Peter Luschny, May 13 2016
From Peter Bala, Sep 06 2022: (Start)
The following assume the row and column indexing start at 0.
Riordan array (f(x), x*g(x)), where f(x) = ( 1 - sqrt((1 - 5*x)/(1 - x)) )/(2*x) = 1 + 2*x + 5*x^2 + 15*x^3 + 51*x^4 + ... is the o.g.f. of A007317 and g(x) = ( 1 - 3*x - sqrt(1 - 6*x + 5*x^2) )/(2*x^2) = 1 + 3*x + 10*x^2 + 36*x^3 + 137*x^4 + .... See A002212.
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 - x)*(1 + 3*x + x^2)^n expanded about the point x = 0.
T(n,k) = a(n,k) - a(n,k+1), where a(n,k) = Sum_{j = 0..n} binomial(n,j)* binomial(j,n-k-j)*3^(2*j+k-n). (End)
EXAMPLE
Row 3 is (5,5,1) because M[3]=[2,1,0;1,3,1;0,1,3] and M[3]^2=[5,5,1;5,11,6;1,6,10].
Triangle starts:
1;
2, 1;
5, 5, 1;
15, 21, 8, 1;
51, 86, 46, 11, 1;
188, 355, 235, 80, 14, 1;
MAPLE
with(linalg): m:=proc(i, j) if i=1 and j=1 then 2 elif i=j then 3 elif abs(i-j)=1 then 1 else 0 fi end: for n from 3 to 11 do A[n]:=matrix(n, n, m): B[n]:=multiply(seq(A[n], i=1..n-1)) od: 1; 2, 1; for n from 3 to 11 do seq(B[n][1, j], j=1..n) od; # yields sequence in triangular form
T := (n, k) -> (-1)^(n-k)*simplify(GegenbauerC(n-k, -n+1, 3/2) + GegenbauerC(n-k-1, -n+1, 3/2)): seq(seq(T(n, k), k=1..n), n=1..10); # Peter Luschny, May 13 2016
MATHEMATICA
T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
Table[T[n, k, 2, 3], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 21 2017 *)
CROSSREFS
Cf. A110877, A091965, A002212, A007317, A026375 (row sums).
Sequence in context: A060920 A107842 A126216 * A137597 A059340 A248727
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Dec 04 2006
STATUS
approved