OFFSET
0,5
COMMENTS
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
LINKS
G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
FORMULA
Sum_{k=0..n} T(n,k) = A126952(n).
Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A117641(m+n).
Sum_{k=0..n} T(n,k)*(4*k+1) = 5^n. - Philippe Deléham, Mar 22 2007
EXAMPLE
Triangle begins:
1;
0, 1;
1, 3, 1;
3, 11, 6, 1;
11, 42, 30, 9, 1;
42, 167, 141, 58, 12, 1;
167, 684, 648, 327, 95, 15, 1; ...
From Philippe Deléham, Nov 07 2011: (Start)
Production matrix begins:
0, 1
1, 3, 1
0, 1, 3, 1
0, 0, 1, 3, 1
0, 0, 0, 1, 3, 1
0, 0, 0, 0, 1, 3, 1
0, 0, 0, 0, 0, 1, 3, 1
0, 0, 0, 0, 0, 0, 1, 3, 1
0, 0, 0, 0, 0, 0, 0, 1, 3, 1 (End)
MATHEMATICA
T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 0, 3], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 21 2017 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Mar 19 2007
STATUS
approved