OFFSET
0,4
COMMENTS
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
Row sums yield A126568. - Philippe Deléham, Oct 10 2007
5^n = (n-th row terms) dot (first n+1 terms in the series (1, 4, 7, 10, ...)). Example for row 4: 5^4 = 625 = (21, 58, 37, 10, 1) dot (1, 4, 7, 10, 13) = (21 + 232 + 259 + 100 + 13). - Gary W. Adamson, Jun 15 2011
Riordan array (2/(1+x+sqrt(1-6*x+5*x^2)), (1-3*x-sqrt(1-6*x+5*x^2))/(2*x)). - Philippe Deléham, Mar 04 2013
LINKS
G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
FORMULA
Sum_{k=0..n} T(m, k)*T(n, k) = T(m+n, 0) = A033321(m+n).
The triangle may also be generated from M^n * [1,0,0,0,...], where M = an infinite tridiagonal matrix with 1's in the super and subdiagonals and (1,3,3,3,...) in the main diagonal. - Gary W. Adamson, Dec 17 2006
Sum_{k=0..n} T(n,k)*(3*k+1) = 5^n. - Philippe Deléham, Feb 26 2007
Sum_{k=0..n} T(n,k) = A126568(n). - Philippe Deléham, Oct 10 2007
EXAMPLE
Triangle begins:
1;
1, 1;
2, 4, 1;
6, 15, 7, 1;
21, 58, 37, 10, 1;
79, 232, 179, 68, 13, 1;
311, 954, 837, 396, 108, 16, 1;
1265, 4010, 3861, 2133, 736, 157, 19, 1;
5275, 17156, 17726, 10996, 4498, 1226, 215, 22, 1;
22431, 74469, 81330, 55212, 25716, 8391, 1893, 282, 25, 1;
...
From Philippe Deléham, Nov 07 2011: (Start)
Production matrix begins:
1, 1;
1, 3, 1;
0, 1, 3, 1;
0, 0, 1, 3, 1;
0, 0, 0, 1, 3, 1;
0, 0, 0, 0, 1, 3, 1;
0, 0, 0, 0, 0, 1, 3, 1;
0, 0, 0, 0, 0, 0, 1, 3, 1;
0, 0, 0, 0, 0, 0, 0, 1, 3, 1;
... (End)
MAPLE
A110877 := proc(n, k)
if k > n then
0;
elif n= 0 then
1;
elif k = 0 then
procname(n-1, 0)+procname(n-1, 1) ;
else
procname(n-1, k-1)+3*procname(n-1, k)+procname(n-1, k+1) ;
end if;
end proc: # R. J. Mathar, Sep 06 2013
MATHEMATICA
T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 1, 3], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 21 2017 *)
CROSSREFS
KEYWORD
AUTHOR
Philippe Deléham, Sep 19 2005
STATUS
approved