[go: up one dir, main page]

login
A126791
Binomial matrix applied to A111418.
24
1, 4, 1, 17, 7, 1, 75, 39, 10, 1, 339, 202, 70, 13, 1, 1558, 1015, 425, 110, 16, 1, 7247, 5028, 2400, 771, 159, 19, 1, 34016, 24731, 12999, 4872, 1267, 217, 22, 1, 160795, 121208, 68600, 28882, 8890, 1940, 284, 25, 1, 764388, 593019, 355890, 164136
OFFSET
0,2
COMMENTS
Triangle T(n,k), 0 <= k <= n, read by rows defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 4*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + T(n-1,k+1) for k >= 1.
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
From R. J. Mathar, Mar 12 2013: (Start)
The matrix inverse starts
1;
-4, 1;
11, -7, 1;
-29, 31, -10, 1;
76, -115, 60, -13, 1;
-199, 390, -285, 98, -16, 1;
521, -1254, 1185, -566, 145, -19, 1;
-1364, 3893, -4524, 2785, -985, 201, -22, 1; ... (End)
FORMULA
Sum_{k>=0} T(m,k)*T(n,k) = T(m+n,0) = A026378(m+n+1).
Sum_{k=0..n} T(n,k) = 5^n = A000351(n).
T(n,k) = (-1)^(n-k)*(GegenbauerC(n-k,-n+1,3/2) - GegenbauerC(n-k-1,-n+1,3/2)). - Peter Luschny, May 13 2016
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 + x )*(1 + 3*x + x^2)^n expanded about the point x = 0. - Peter Bala, Sep 06 2022
EXAMPLE
Triangle begins:
1;
4, 1;
17, 7, 1;
75, 39, 10, 1;
339, 202, 70, 13, 1;
1558, 1015, 425, 110, 16, 1;
7247, 5028, 2400, 771, 159, 19, 1;
34016, 24731, 12999, 4872, 1267, 217, 22, 1; ...
From Philippe Deléham, Nov 07 2011: (Start)
Production matrix begins:
4, 1
1, 3, 1
0, 1, 3, 1
0, 0, 1, 3, 1
0, 0, 0, 1, 3, 1
0, 0, 0, 0, 1, 3, 1
0, 0, 0, 0, 0, 1, 3, 1
0, 0, 0, 0, 0, 0, 1, 3, 1
0, 0, 0, 0, 0, 0, 0, 1, 3, 1 (End)
MAPLE
A126791 := proc(n, k)
if n=0 and k = 0 then
1 ;
elif k <0 or k>n then
0;
elif k= 0 then
4*procname(n-1, 0)+procname(n-1, 1) ;
else
procname(n-1, k-1)+3*procname(n-1, k)+procname(n-1, k+1) ;
end if;
end proc: # R. J. Mathar, Mar 12 2013
T := (n, k) -> (-1)^(n-k)*simplify(GegenbauerC(n-k, -n+1, 3/2) - GegenbauerC(n-k-1, -n+1, 3/2)): seq(seq(T(n, k), k=1..n), n=1..10); # Peter Luschny, May 13 2016
MATHEMATICA
T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,
T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
Table[T[n, k, 4, 3], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)
CROSSREFS
Sequence in context: A369912 A093035 A301624 * A052179 A171589 A126331
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Mar 14 2007
STATUS
approved