[go: up one dir, main page]

login
A111418
Right-hand side of odd-numbered rows of Pascal's triangle.
32
1, 3, 1, 10, 5, 1, 35, 21, 7, 1, 126, 84, 36, 9, 1, 462, 330, 165, 55, 11, 1, 1716, 1287, 715, 286, 78, 13, 1, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 24310, 19448, 12376, 6188, 2380, 680, 136, 17, 1, 92378, 75582, 50388
OFFSET
0,2
COMMENTS
Riordan array (c(x)/sqrt(1-4*x),x*c(x)^2) where c(x) is g.f. of A000108. Unsigned version of A113187. Diagonal sums are A014301(n+1).
Triangle T(n,k),0<=k<=n, read by rows defined by :T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=3*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+2*T(n-1,k)+T(n-1,k+1) for k>=1. - Philippe Deléham, Mar 22 2007
Reversal of A122366. - Philippe Deléham, Mar 22 2007
Column k has e.g.f. exp(2x)(Bessel_I(k,2x)+Bessel_I(k+1,2x)). - Paul Barry, Jun 06 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1 . Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
Diagonal sums are A014301(n+1). - Paul Barry, Mar 08 2011
This triangle T(n,k) appears in the expansion of odd powers of Fibonacci numbers F=A000045 in terms of F-numbers with multiples of odd numbers as indices. See the Ozeki reference, p. 108, Lemma 2. The formula is: F_l^(2*n+1) = sum(T(n,k)*(-1)^((n-k)*(l+1))* F_{(2*k+1)*l}, k=0..n)/5^n, n >= 0, l >= 0. - Wolfdieter Lang, Aug 24 2012
Central terms give A052203. - Reinhard Zumkeller, Mar 14 2014
This triangle appears in the expansion of (4*x)^n in terms of the polynomials Todd(n, x):= T(2*n+1, sqrt(x))/sqrt(x) = sum(A084930(n,m)*x^m), n >= 0. This follows from the inversion of the lower triangular Riordan matrix built from A084930 and comparing the g.f. of the row polynomials. - Wolfdieter Lang, Aug 05 2014
From Wolfdieter Lang, Aug 15 2014: (Start)
This triangle is the inverse of the signed Riordan triangle (-1)^(n-m)*A111125(n,m).
This triangle T(n,k) appears in the expansion of x^n in terms of the polynomials todd(k, x):= T(2*k+1, sqrt(x)/2)/(sqrt(x)/2) = S(k, x-2) - S(k-1, x-2) with the row polynomials T and S for the triangles A053120 and A049310, respectively: x^n = sum(T(n,k)*todd(k, x), k=0..n). Compare this with the preceding comment.
The A- and Z-sequences for this Riordan triangle are [1, 2, 1, repeated 0] and [3, 1, repeated 0]. For A- and Z-sequences for Riordan triangles see the W. Lang link under A006232. This corresponds to the recurrences given in the Philippe Deléham, Mar 22 2007 comment above. (End)
LINKS
Paul Barry, On the Hurwitz Transform of Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.8.7.
E. Deutsch, L. Ferrari and S. Rinaldi, Production Matrices, Advances in Applied Mathematics, 34 (2005) pp. 101-122.
Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Article 12.3.3, 2012.
A. Nkwanta, A. Tefera, Curious Relations and Identities Involving the Catalan Generating Function and Numbers, Journal of Integer Sequences, 16 (2013), #13.9.5.
K. Ozeki, On Melham's sum, The Fibonacci Quart. 46/47 (2008/2009), no. 2, 107-110.
Sun, Yidong; Ma, Luping Minors of a class of Riordan arrays related to weighted partial Motzkin paths. Eur. J. Comb. 39, 157-169 (2014), Table 2.2.
FORMULA
T(n, k) = C(2*n+1, n-k).
Sum_{k=0..n} T(n, k) = 4^n.
Sum_{k, 0<=k<=n}(-1)^k *T(n,k) = binomial(2*n,n) = A000984(n). - Philippe Deléham, Mar 22 2007
T(n,k) = sum{j=k..n, C(n,j)*2^(n-j)*C(j,floor((j-k)/2))}. - Paul Barry, Jun 06 2007
Sum_{k, k>=0} T(m,k)*T(n,k) = T(m+n,0)= A001700(m+n). - Philippe Deléham, Nov 22 2009
G.f. row polynomials: ((1+x) - (1-x)/sqrt(1-4*z))/(2*(x - (1+x)^2*z))
(see the Riordan property mentioned in a comment above). - Wolfdieter Lang, Aug 05 2014
EXAMPLE
From Wolfdieter Lang, Aug 05 2014: (Start)
The triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 3 1
2: 10 5 1
3: 35 21 7 1
4: 126 84 36 9 1
5: 462 330 165 55 11 1
6: 1716 1287 715 286 78 13 1
7: 6435 5005 3003 1365 455 105 15 1
8: 24310 19448 12376 6188 2380 680 136 17 1
9: 92378 75582 50388 27132 11628 3876 969 171 19 1
10: 352716 293930 203490 116280 54264 20349 5985 1330 210 21 1
...
Expansion examples (for the Todd polynomials see A084930 and a comment above):
(4*x)^2 = 10*Todd(n, 0) + 5*Todd(n, 1) + 1*Todd(n, 2) = 10*1 + 5*(-3 + 4*x) + 1*(5 - 20*x + 16*x^2).
(4*x)^3 = 35*1 + 21*(-3 + 4*x) + 7*(5 - 20*x + 16*x^2) + (-7 + 56*x - 112*x^2 +64*x^3)*1. (End)
---------------------------------------------------------------------
Production matrix is
3, 1,
1, 2, 1,
0, 1, 2, 1,
0, 0, 1, 2, 1,
0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 0, 0, 0, 1, 2, 1
- Paul Barry, Mar 08 2011
Application to odd powers of Fibonacci numbers F, row n=2:
F_l^5 = (10*(-1)^(2*(l+1))*F_l + 5*(-1)^(1*(l+1))*F_{3*l} + 1*F_{5*l})/5^2, l >= 0. - Wolfdieter Lang, Aug 24 2012
MATHEMATICA
Table[Binomial[2*n+1, n-k], {n, 0, 10}, {k, 0, n}] (* G. C. Greubel, May 22 2017 *)
T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,
T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
Table[T[n, k, 3, 2], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)
PROG
(Haskell)
a111418 n k = a111418_tabl !! n !! k
a111418_row n = a111418_tabl !! n
a111418_tabl = map reverse a122366_tabl
-- Reinhard Zumkeller, Mar 14 2014
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Nov 13 2005
STATUS
approved