[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253178 revision #49

A253178
Least k>=1 such that 2*A007494(n)^k+1 is prime.
3
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 47, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 2729, 1, 1, 2, 1, 2, 175, 1, 1, 1, 1, 1, 1, 3, 3, 3, 43, 1, 1, 2, 1, 1, 3, 2, 1, 1, 3, 1, 11, 1, 1, 4, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 192275, 2, 1233, 1, 3, 5, 51, 1, 1, 1, 1, 286, 1, 1, 755, 2, 1, 4, 1, 6, 1, 2
OFFSET
1,8
COMMENTS
If n=3j+1, then all 2*n^k+1 are divisible by 3 and cannot be prime, so we limited the n in A007494 (n which is not in the form 3j+1).
Conjecture: a(n) is defined for all n.
a(145) > 200000, a(146) - a(156) = {1, 1, 66, 1, 4, 3, 1, 1, 1, 1, 6}, a(157) > 100000, a(158) - a(180) = {2, 1, 2, 11, 1, 1, 3, 321, 1, 1, 3, 1, 2, 12183, 5, 1, 1, 957, 2, 3, 16, 3, 1}.
a(n) = 1 if and only if n is in A144769.
FORMULA
a(n) = A119624(A007494(n)).
MATHEMATICA
A007494[n_] := 2n - Floor[n/2];
Table[k=1; While[!PrimeQ[2*A007494[n]^k+1], k++]; k, {n, 1, 144}]
PROG
(PARI) a007494(n) = n+(n+1)>>1
a(n) = for(k=1, 2^24, if(ispseudoprime(2*a007494(n)^k+1), return(k)))
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
Eric Chen, Mar 20 2015
STATUS
proposed