[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177848
Triangle, read by rows, T(n, k) = t(k, n-k+1) - t(1, n) + 1 where t(n, m) = (n*m)!*Beta(n, m).
1
1, 1, 1, 1, 3, 1, 1, 55, 55, 1, 1, 1993, 12073, 1993, 1, 1, 120841, 7983241, 7983241, 120841, 1, 1, 11404081, 12454040881, 149448498481, 12454040881, 11404081, 1, 1, 1556750161, 38109367290961, 8688935743482961, 8688935743482961, 38109367290961, 1556750161, 1
OFFSET
1,5
COMMENTS
Row sums are {1, 2, 5, 112, 16061, 16208166, 174379388407, 17454093335048168, 27083470639271574245769, 421762213493139881153379087370, ...}.
FORMULA
Let t(n, k) = (n*k)!*Beta(n, k) then T(n, k) = t(k, n-k+1) - t(1, n) + 1.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 55, 55, 1;
1, 1993, 12073, 1993, 1;
1, 120841, 7983241, 7983241, 120841, 1;
1, 11404081, 12454040881, 149448498481, 12454040881, 11404081, 1;
MATHEMATICA
t[n_, k_]:= (n*k)!*Beta[n, k];
Table[t[k, n-k+1] - t[1, n] + 1, {n, 12}, {k, n}]//Flatten
PROG
(Sage)
def t(n, k): return factorial(n*k)*beta(n, k)
flatten([[t(k, n-k+1) - t(1, n) + 1 for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 06 2021
CROSSREFS
Cf. A060854.
Sequence in context: A173505 A253178 A174587 * A168549 A010272 A368026
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, May 14 2010
EXTENSIONS
Edited by G. C. Greubel, Feb 06 2021
STATUS
approved