OFFSET
0,5
COMMENTS
In general, column k>0 is asymptotic to (4*k)^n / (k!*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 01 2015
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
FORMULA
EXAMPLE
T(3,1) = 5: ()()(), ()(()), (())(), (()()), ((())).
T(3,2) = 15: ()()[], ()[](), ()[][], ()([]), ()[()], ()[[]], (())[], ([])(), ([])[], (()[]), ([]()), ([][]), (([])), ([()]), ([[]]).
T(3,3) = 5: ()[]{}, ()[{}], ([]){}, ([]{}), ([{}]).
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 2;
0, 5, 15, 5;
0, 14, 98, 84, 14;
0, 42, 630, 1050, 420, 42;
0, 132, 4092, 11880, 8580, 1980, 132;
0, 429, 27027, 129129, 150150, 60060, 9009, 429;
...
MAPLE
ctln:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
A:= proc(n, k) option remember; k^n*ctln(n) end:
T:= (n, k)-> add(A(n, k-i)*(-1)^i/((k-i)!*i!), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
A[n_, k_] := A[n, k] = k^n*CatalanNumber[n]; T[0, 0] = 1; T[n_, k_] := Sum[A[n, k-i]*(-1)^i/((k-i)!*i!), {i, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 11 2017, adapted from Maple *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Mar 23 2015
STATUS
approved