[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a253178 -id:a253178
     Sort: relevance | references | number | modified | created      Format: long | short | data
Least k such that 2*n^k - 1 is prime.
+10
3
1, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 2, 4, 1, 1, 2, 2, 1, 10, 1, 1, 6, 1, 2, 6, 1, 2, 136, 1, 1, 6, 6, 1, 6, 1, 1, 2, 2, 1, 2, 1, 2, 4, 1, 2, 4, 4, 1, 2, 1, 1, 44, 1, 1, 2, 1, 3, 2, 5, 3, 2, 2, 1, 4, 1, 768, 4, 1, 1, 52, 34, 2, 132, 1, 1, 14, 7, 1, 2, 2, 1, 8, 1, 2, 10, 1, 24, 60, 1, 1, 2, 3, 5, 2, 1, 1, 2, 1, 1
OFFSET
2,4
COMMENTS
From Eric Chen, Jun 01 2015: (Start)
Conjecture: a(n) is defined for all n.
a(303) > 10000, a(304)..a(360) = {1, 2, 11, 1, 990, 1, 1, 2, 2, 4, 74, 5, 1, 10, 6, 6, 4, 1, 1, 2, 1, 9, 12, 1, 80, 2, 1, 1, 2, 14, 3, 2, 3, 1, 12, 1, 60, 36, 1, 8, 4, 34, 1, 522, 3, 15, 14, 1, 6, 2, 3, 1, 4, 5, 4, 10, 1}.
a(n) = 1 if and only if n is in A006254. (End)
From Eric Chen, Sep 16 2021: (Start)
Now a(303) is known to be 40174, also other terms > 10000: a(383) = 20956, a(515) = 58466, a(522) = 62288, a(578) = 129468, a(581) > 400000, a(590) = 15526, a(647) = 21576, a(662) = 16590, a(698) = 127558, a(704) = 62034, see the a-file and the references.
a(n) = 2 if and only if n is in A066049 but not in A006254.
a(n) = 3 if and only if n is in A214289 but not in A006254 or A066049. (End)
FORMULA
From Eric Chen, Sep 16 2021: (Start)
a(6*n) = A098873(n).
a(2^n) = A279095(n).
a(A006254(n)) = 1.
a(A066049(n)) <= 2.
a(A214289(n)) <= 3. (End)
MATHEMATICA
f[n_] := Block[{k = 0}, While[ ! PrimeQ[2*n^k - 1], k++ ]; k ]; Table[f[n], {n, 2, 106}] (* Ray Chandler, Jun 08 2006 *)
PROG
(PARI) a(n) = for(k=1, 2^24, if(ispseudoprime(2*n^k-1), return(k))) \\ Eric Chen, Jun 01 2015
CROSSREFS
Numbers r such that 2*k^r-1 is prime: A090748 (k=2), A003307 (k=3), A146768 (k=4), A120375 (k=5), A057472 (k=6), A002959 (k=7), ... (k=8), ... (k=9), A002957 (k=10), A120378 (k=11), ... (k=12), A174153 (k=13), A273517 (k=14), ... (k=15), ... (k=16), A193177 (k=17), A002958 (k=25).
KEYWORD
nonn,hard
AUTHOR
Pierre CAMI, Jun 01 2006
EXTENSIONS
Corrected and extended by Ray Chandler, Jun 08 2006
STATUS
approved
Least k>0 such that, for n>1, 2*n^k + 1 is prime; or 0 if no such prime possible as 2*n^k + 1 is 0 mod(3).
+10
3
1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 3, 0, 1, 1, 0, 47, 1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 0, 1, 1, 0, 3, 1, 0, 1, 1, 0, 2729, 1, 0, 1, 2, 0, 1, 2, 0, 175, 1, 0, 1, 1, 0, 1, 1, 0, 1, 3, 0, 3, 3, 0, 43, 1, 0, 1, 2, 0, 1, 1, 0, 3, 2, 0, 1, 1, 0, 3, 1, 0, 11, 1, 0, 1, 4, 0, 1, 2, 0, 1, 1, 0, 3, 2, 0, 1, 1, 0, 1, 1, 0
OFFSET
1,12
LINKS
MAPLE
f:= proc(n) local k;
if n mod 3 = 1 then return 0 fi;
if n mod 3 = 2 then r:= 2 else r:= 1 fi;
for k from 1 by r do if isprime(2*n^k+1) then return k fi od
end proc:
f(1):= 1:
map(f, [$1..100]); # Robert Israel, Apr 02 2018
MATHEMATICA
f[n_] := Block[{k = 0}, If[Mod[n, 3] != 1, k = 1; While[ ! PrimeQ[2*n^k + 1], k++ ]; ]; k ]; Table[f[n], {n, 2, 100}] (* Ray Chandler, Jun 08 2006 *)
Table[If[n>1 && Mod[n, 3]==1, 0, k=1; While[ !PrimeQ[2n^k+1], k++ ]; k], {n, 100}] (* T. D. Noe, Jun 08 2006 *)
PROG
(PARI) a(n) = if(n%3==1, 0, for(k=1, 2^24, if(ispseudoprime(2*n^k+1), return(k)))) \\ Eric Chen, Mar 20 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Pierre CAMI, Jun 08 2006
EXTENSIONS
Extended by Ray Chandler and T. D. Noe, Jun 08 2006
STATUS
approved

Search completed in 0.005 seconds