[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255707
Least number k > 0 such that (2*n-1)^k - 2 is prime, or 0 if no such number exists.
5
0, 2, 1, 1, 1, 4, 1, 1, 6, 1, 1, 24, 1, 2, 2, 1, 1, 2, 2, 1, 4, 1, 1, 2, 1, 8, 4, 1, 12, 4, 1, 1, 8, 3, 1, 2, 1, 1, 2, 38, 1, 4, 1, 4, 2, 1, 2, 4, 747, 1, 4, 1, 1, 2, 1, 1, 10, 1, 2, 2, 2, 6, 42, 2, 1, 2, 1, 2, 10, 1, 1, 4, 2, 16, 50, 1, 1, 2, 22, 1, 2, 38
OFFSET
1,2
LINKS
Michel Marcus, Table of n, a(n) for n = 1..152 (terms 1..143 from Robert Price)
Carlos Rivera, Puzzle 887. p(n)^c-2 is prime, The Prime Puzzles and Problems Connection.
FORMULA
a(A098090(n)) = 1. - Michel Marcus, Mar 03 2015
MATHEMATICA
lst = {0}; For[n = 2, n ≤ 143, n++, For[k = 1, k >= 1, k++, If[PrimeQ[(2*n - 1)^k - 2], AppendTo[lst, k]; Break[]]]]; lst
PROG
(PARI) a(n)=if(n==1, return(0)); k=1; while(k, if(ispseudoprime((2*n-1)^k-2), return(k)); k++)
vector(50, n, a(n)) \\ Derek Orr, Mar 03 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Price, Mar 02 2015
STATUS
approved