Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #58 Apr 13 2015 05:10:50
%S 1,1,1,1,1,1,1,3,1,1,47,1,1,1,1,2,1,2,1,1,3,1,1,1,2729,1,1,2,1,2,175,
%T 1,1,1,1,1,1,3,3,3,43,1,1,2,1,1,3,2,1,1,3,1,11,1,1,4,1,2,1,1,3,2,1,1,
%U 1,1,192275,2,1233,1,3,5,51,1,1,1,1,286,1,1,755,2,1,4,1,6,1,2
%N Least k>=1 such that 2*A007494(n)^k+1 is prime.
%C If n == 1 (mod 3), then for every positive integer k, 2*n^k+1 is divisible by 3 and cannot be prime (unless n=1). Thus we restrict the domain of this sequence to A007494 (n which is not in the form 3j+1).
%C Conjecture: a(n) is defined for all n.
%C a(145) > 200000, a(146) .. a(156) = {1, 1, 66, 1, 4, 3, 1, 1, 1, 1, 6}, a(157) > 100000, a(158) .. a(180) = {2, 1, 2, 11, 1, 1, 3, 321, 1, 1, 3, 1, 2, 12183, 5, 1, 1, 957, 2, 3, 16, 3, 1}.
%C a(n) = 1 if and only if n is in A144769.
%H Eric Chen, <a href="/A253178/b253178.txt">Table of n, a(n) for n = 1..144</a>
%F a(n) = A119624(A007494(n)).
%t A007494[n_] := 2n - Floor[n/2];
%t Table[k=1; While[!PrimeQ[2*A007494[n]^k+1], k++]; k, {n, 1, 144}]
%o (PARI) a007494(n) = n+(n+1)>>1;
%o a(n) = for(k=1, 2^24, if(ispseudoprime(2*a007494(n)^k+1),return(k)));
%Y Cf. A138066, A138067, A255707, A250200, A119624, A119591, A040076, A046067.
%K nonn,hard
%O 1,8
%A _Eric Chen_, Mar 20 2015