[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145155
Coefficients in expansion of Delta'(q).
2
1, -48, 756, -5888, 24150, -36288, -117208, 675840, -1022787, -1159200, 5880732, -4451328, -7510594, 5625984, 18257400, 15794176, -117400878, 49093776, 202566980, -142195200, -88609248, -282275136, 428795256, 510935040, -637480625, 360508512, -1978535160
OFFSET
0,2
COMMENTS
First derivative of cusp form Delta (see A000594).
LINKS
M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998
FORMULA
a(n) = (n+1) * A000594(n+1). - Seiichi Manyama, Feb 03 2017
EXAMPLE
G.f. = 1 - 2*24*q + 3*252*q^2 - 4*1472*q^3 + 5*4830*q^4 - 6*6048*q^5 - 7*16744*q^6 + ...
MAPLE
with(numtheory); E:=proc(k) series(1-(2*k/bernoulli(k))*add( sigma[k-1](n)*q^n, n=1..60), q, 61); end; Delta:=series((E(4)^3-E(6)^2)/1728, q, 60); diff(%, q);
MATHEMATICA
a[n_] := (n+1)*RamanujanTau[n+1];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 12 2023 *)
CROSSREFS
Cf. A000594.
Sequence in context: A186162 A102279 A132464 * A105948 A350378 A192839
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Feb 28 2009
STATUS
approved