OFFSET
0,13
COMMENTS
LINKS
Alois P. Heinz, Antidiagonals n = 0..140, flattened
FORMULA
G.f. of column k: x/((1-x-x^4)*(1-x)^(k-1)).
EXAMPLE
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 1, 3, 6, 10, 15, 21, ...
0, 1, 4, 10, 20, 35, 56, ...
1, 2, 6, 16, 36, 71, 127, ...
MAPLE
A:= proc(n, k) coeftayl (x/ (1-x-x^4)/ (1-x)^(k-1), x=0, n) end:
seq(seq(A(n, d-n), n=0..d), d=0..13);
MATHEMATICA
a[n_, k_] := SeriesCoefficient[x/(1 - x - x^4)/(1 - x)^(k - 1), {x, 0, n}]; Table[a[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 05 2013 *)
CROSSREFS
Rows 0-9 give: A000004, A000012, A001477, A000217, A000292, A145126, A145127, A145128, A145129, A145130.
Columns 0-9 give: A017898(n-1) for n>0, A003269, A098578, A145131, A145132, A145133, A145134, A145135, A145136, A145137.
Main diagonal gives: A145138.
Antidiaginal sums give: A145139.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Oct 03 2008
STATUS
approved